首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过实例,介绍了数字相关滤波精密检测问题的提出,数字相关滤波理论,探讨了数字相关滤波在非接触精密位置检测与控制系统中的应用原理及实现方法.文末.还就相关滤波的其它应用作了简介.  相似文献   

2.
现代超精密加工技术   总被引:9,自引:0,他引:9  
在介绍传统起精密加工技术的基础上,首先对现代起精密加工技术特别是纳米级加工以及纳米级测技校本进行了介绍.此外还介绍了现代科故发展中应用日趋广泛的典型零件非球而曲面和精密偶件的越精密加工技术.  相似文献   

3.
超精密加工技术的发展   总被引:2,自引:0,他引:2  
首先论述了现代制造技术所包含的内容及在国民经济建设中的地位和重要性.而精密加工和超精密加工是现代制造技术的重要组成部分,对国家工业水平和国民经济有重要作用.从美、日等国家在精密加工技术和微型机械这两方面介绍了超精密加工技术的发展。  相似文献   

4.
航空精密制造技术的发展水平已经成为衡量国家综合实力和科技发展水平的重要标志之一。随着机械加工技术、电子电气技术、自动控制技术以及信息技术的高速发展,在此之上集成的航空精密制造技术得到了空前的飞跃,不断涌现出新技术、新工艺和新产品。与此同时,随着技术和产品的精度性能逐渐提高,对关键参数的精密测量的需求逐步增大。但是对于航空制造中的器件而言,很多测量需求无法由传统的测量方案满足。激光回馈效应是指激光器出射的激光被外部待测物体表面反射或者散射回到激光器内对激光器输出光强、偏振态和相位进行调制的一种现象。激光回馈效应进行精密测量具有高灵敏度,可实现非配合目标,如黑色、粗糙、柱面、微小型或液体目标的测量;结构紧凑,易于调节;测量结果分辨率高,可溯源到激光波长等优点。利用激光回馈效应,可以对航空制造中的零件进行精密测量,实现加工过程中的精密定位和部件实时工况的精密监测,对于提高航空制造精度,促进行业发展具有不可替代的作用。  相似文献   

5.
应用涡流电导率检测技术评定铝合金的热损伤   总被引:2,自引:0,他引:2  
综述了铝合金产品在现代航空工业中的重要作用,举例说明了涡流电导率检测技术在评定铝合金热损伤方面的潜在用途,指出这种检测方法是今后铝合金质量控制的有效手段,特别是在飞机结构件烧伤的检测中有独特的优越性。  相似文献   

6.
杨辉 《航空精密制造技术》2011,47(4):前插1-前插3
精密超精密加工是现代高技术战争的重要支撑技术,是现代高科技产业和科学技术的发展基础.以精密超精密加工技术为支撑的高性能武器,对现代战争的进程及结果发挥了决定性的作用;现代科学技术的发展以实验为基础,所需实验仪器和设备几乎无一不需要精密超精密加工技术的支撑.  相似文献   

7.
用于精密和超精密测长的双频激光干涉仪   总被引:3,自引:0,他引:3  
叙述了双频激光干涉仪在精密和超精密测长技术领域中的应用,讨论了双频激光干涉仪所涉及的关键技术,提出了在应用中需要进行的误差处理,目的是提高在精密和超精密测长应用中的测量精度。  相似文献   

8.
先进无损检测技术在复合材料缺陷检测中的应用   总被引:1,自引:0,他引:1  
针对飞机复合材料构件全生命周期无损检测问题,介绍喷水超声C扫描技术、相控阵超声技术、空气耦合超声技术、激光超声技术和红外热成像技术在复合材料检测中的最新应用.研制大型喷水超声C扫描系统和新型超声、红外检测系统并开展试验研究,采用喷水超声方法,实现了蜂窝夹芯复合材料构件的C扫描检测;采用相控阵超声检测方法,实现了碳纤维复合材料R角检测;采用空气耦合超声方法,实现了蜂窝夹芯复合材料检测和PMMA板的导波检测;采用激光超声方法,实现了碳纤维复合材料分层检测;采用红外热成像方法,实现了蜂窝夹芯复合材料结构检测.研究表明,提出的超声、红外检测技术可以用于飞机复合材料构件全生命周期的大型结构检测、复杂结构检测、非接触检测、高精度检测和外场快速检测.  相似文献   

9.
目前卫星定位技术中常用的高精度定位方法主要是相对定位和非差相位精密单点定位。非差相位精密单点定位无法像相对定位那样使用差分方式来消除定位中的某些误差,因而如何对影响定位的各个误差源进行准确地建模修正是提高非差相位精密单点定位精度和收敛速度的关键。本文从非差相位精密单点定位的3个关键环节入手,对影响定位收敛速度的因素进行简要分析,讨论了改善措施,并结合实际数据进行了相关验证。  相似文献   

10.
中航工业北京航空精密机械研究所始建于1961年,系中航工业所属的综合性应用技术研究所,是航空机载设备制造技术研究开发中心,拥有精密制造技术航空重点实验室和航空精密加工制造技术中心,主要承担航空机载设备精密制造和精密检测技术及其设备的研制和开发。研究所在精密、超精密加工技术与设备,惯导测试与运动仿真技术与设备,数控三坐标测量机技术与设备,精密检测技术与设备,环境试验技术与设  相似文献   

11.
对摇臂、杠杆的精密模锻技术进行了探讨,介绍了平面精压成形技术和温锻成形技术在精密模锻中的应用。此外,还对精密模锻技术中的深凸台、坯料简化等问题进行了研究。  相似文献   

12.
大口径光学元件超精密加工是一个复杂的系统性工程,涉及精密机床、数控、加工技术与工艺、精密检测和补偿控制等机电控各领域的专业知识,其发展与一个国家的高端制造技术及装备发展能力息息相关,也是一个国家综合国力的集中体现。主要介绍了厦门大学微纳米加工与检测联合实验室在大口径光学元件超精密加工技术及装备方面取得的研究进展,针对大口径光学元件磨削和抛光两个加工流程及其配套的精密检测技术,详细阐述了磨削装备及单元技术、可控气囊抛光机床及相关单元技术、精密检测装备及相关单元技术等的研究应用情况。这些技术研究从超精密加工的需求出发,借鉴国内外的研究经验和成果,通过对装备、工艺、检测等各方面整合,形成了具有自主知识产权的集磨削、抛光和检测装备及工艺技术的大口径光学元件超精密加工体系,这些技术与装备确保了大口径光学元件的高质量超精密加工。  相似文献   

13.
张欢  宋劲 《民航科技》2007,(6):57-58
网络入侵检测系统能够对网络中发生的安全事件和网络中存在的安全漏洞进行主动实时的监测,是现代计算机网络安全的关键技术之一。本文介绍了入侵检测技术的概念、原理、功能、分类和未来的发展趋势。  相似文献   

14.
王修殿 《航空计测技术》1994,14(3):25-26,10
CoordinateTestofAutomobileBrakeCamWangXiudian我厂生产的汽车后制动凸轮如图1所示,要求渐开线凸轮2工作面对φ40dC3mm轴的对称度不超过0.10mm;渐开线对基圆中心的实际位置与理论位置不超过0.06mm。为了确保加工中的凸轮符合设计要求,一般在精磨后,抽样检测。由于我厂没有检测凸轮的分度仪器和专用量具,为此,我们在检测此产品时,根据正弦原理,设计和制作了汽车后制动凸轮检具,采用精密量具和量仪,按渐开线形成原理,用极坐标方法进行检测。此检具结构简单,定位合理,使用方便,检测准确度高,避免了检测基准不合理所带来…  相似文献   

15.
面向飞机结构件高精密和智能化准确度检测的需求,采用数字孪生方法及关键技术,以Unity 3D作为平台开发环境,通过搭建数字化模型,结合传感技术和物联网技术,开发了基于数字孪生技术的飞机结构件准确度检测平台,即DT-MEAS数字孪生平台。为数字孪生技术在航空制造业的应用提供了新的模式与方法。  相似文献   

16.
通过分析大量技术文献,结合航空公司使用经验,剖析了现代机载气象雷达的技术难点和应用中的关键技术,包括雨衰减的补偿、湍流和风切变检测、自动地杂波抑制和故障诊断,并在此基础上展望未来机载气象雷达的功能和应用。  相似文献   

17.
针对某型装备润滑系统、燃油系统、助推器等气密性检测要求,分析了常用气密性检测方法的特点,介绍了一种基于精密压力传感器的直压气密性检测技术方案,采用DPS8000精密压力传感器作为系统压力检测单元,内嵌了无油干式压力泵作为压力源,采用了STM32F103VE微控制器,提出了基于最小二乘法的气压泄漏率计算模型和温度补偿模型,扩展了设备温度适应范围,提高了检测准确度,实现了气密性自动检测,检测压力和保压时间数字设定,具有操作方便、显示直观、灵敏度高、便携性好的特点。  相似文献   

18.
对运用精密检测仪器检测短圆弧的方法进行了探讨;结合传统方法进行测量误差的对比分析,找出测量短圆弧过程中的难点;介绍了一种可在坐标类测量设备(万能工具显微镜、数控显微镜、三坐标测量机、投影仪)上进行推广的短圆弧测量方法。  相似文献   

19.
介绍如何用三坐标测量机及其通用测量软件实现对精铸叶片的检测。该测量方法更趋于规范、合理,与传统方法相比,其检测精度和效率都有明显提高。该方法亦可推广于其他复杂型面零件的精密检测。  相似文献   

20.
为了与网络系统中的入侵行为进行抗衡,可以通过安装入侵检测系统来监控系统中的各种网络行为,入侵容忍可以作为入侵检测系统的互补系统与之一起工作.漏报与误报问题是入侵检测系统面临的根本性问题,加入神经网络技术后并不能完全解决此问题.入侵容忍技术的提出很好地平衡了"失误"与"恶意"、"入侵"与"非有意"之间的冲突与矛盾.入侵容忍本身就是一种"模糊"概念,为模糊数学在计算机安全中的应用提供了有力的理论支持.提出了一种基于模糊神经网络的入侵检测系统应用于入侵容忍的设计方案,并将入侵容忍与入侵检测、防火墙结合,作为一个独立于应用的系统进行设计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号