首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
With rich experience of the successful Indian remote sensing satellite series, Indian Space Research Organization (ISRO) has started theme-based satellites like Resourcesat and Oceansat. Further taking the advantage of the improved technologies in areas of miniaturization, the micro- and mini-satellite series have been started, which will provide opportunity for the payloads of stand-alone missions, for applications, study or research. These include payloads for Earth imaging, atmospheric monitoring, ocean monitoring, scientific applications, and stellar observation. The micro-satellites are of 100 kg class, planned with a payload of about 30 kg and 20 W power and mini-satellites of 450 kg class for payloads of 200 kg and power of 200 W. The first satellite in the micro-satellite series is an Earth imaging payload followed by the second satellite with scientific payloads with the participation of students. Further the scientific proposals for micro-satellites are under evaluation. Similarly the first two missions of mini-satellites are defined with first one carrying ocean and environment monitoring payloads followed by the Earth imaging satellite with multi-spectral camera with 700 km swath. The current paper touches upon the technology involved in realization of the micro- and mini-satellites and the scope of applications of the series.  相似文献   

2.
《Acta Astronautica》2010,66(11-12):1616-1627
Flying Laptop is the first small satellite developed by the Institute of Space Systems at the Universität Stuttgart. It is a test bed for an on-board computer with a reconfigurable, redundant and self-controlling high computational ability based on the field programmable gate arrays (FPGAs). This Technical Note presents the operational concept and the on-board payload data processing of the satellite. The designed operational concept of Flying Laptop enables the achievement of mission goals such as technical demonstration, scientific Earth observation, and the payload data processing methods. All these capabilities expand its scientific usage and enable new possibilities for real-time applications. Its hierarchical architecture of the operational modes of subsystems and modules are developed in a state-machine diagram and tested by means of MathWorks Simulink-/Stateflow Toolbox. Furthermore, the concept of the on-board payload data processing and its implementation and possible applications are described.  相似文献   

3.
Flying Laptop is the first small satellite developed by the Institute of Space Systems at the Universität Stuttgart. It is a test bed for an on-board computer with a reconfigurable, redundant and self-controlling high computational ability based on the field programmable gate arrays (FPGAs). This Technical Note presents the operational concept and the on-board payload data processing of the satellite. The designed operational concept of Flying Laptop enables the achievement of mission goals such as technical demonstration, scientific Earth observation, and the payload data processing methods. All these capabilities expand its scientific usage and enable new possibilities for real-time applications. Its hierarchical architecture of the operational modes of subsystems and modules are developed in a state-machine diagram and tested by means of MathWorks Simulink-/Stateflow Toolbox. Furthermore, the concept of the on-board payload data processing and its implementation and possible applications are described.  相似文献   

4.
Starting from their FIRES proposal [1]the DLR makes a new approach in the design of a small satellite mission dedicated to hot spot detection and evaluation: the BIRD mission. The new approach is characterized by a strict design-to-cost philosophy. A two-channel infrared sensor system in combination with a Wide-Angle Optoelectronic Stereo Scanner (WAOSS) shall be the payload of a small satellite (80kg) considered for piggyback launch. So the launch is not a main cost driver as for other small satellite missions with dedicated launchers. The paper describes the mission objectives, the scientific payload, the spacecraft bus, and the mission architecture of a small satellite mission dedicated to the investigation of hot spots (forest fires, volcanic activities, burning oil wells or coal seams), of vegetation condition and changes and of clouds. The paper represents some results of a phase A study and of the progressing phase B.  相似文献   

5.
S. Parameswaran  H.P. Shenoy   《Acta Astronautica》2009,65(9-10):1330-1335
Geosynchronous space missions of ISRO with wide spectrum of payloads provide vital infrastructure for National Development and economic programs. Space technology had grown at a phenomenal rate and complex systems are already operational. Successful mission operations depend very much on many ground systems and knowledge base of the informed operator. An effective balance is to be maintained while using on-board autonomy and automatic operations from ground. The requirement to protect the payload services has increased since the solar activity is reportedly higher during recent times. The rich experience of Geo-mission operations has helped ISRO in formulating suitable algorithms and successfully implementing them to ensure service protection. The other benefit is operational economy since skilled work force is able to concentrate on health analysis and planning rather than routine operations. In this paper, certain case studies are discussed illustrating different levels of automation in ground operations.  相似文献   

6.
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning.Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime.The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.  相似文献   

7.
In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In this paper, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. Finally, a Genetic Algorithm (GA) multiobjective optimization is applied to the design space. The result is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget, which gives a useful insight to the design team at the early phases of the design.  相似文献   

8.
研究了双体卫星(DFP)对日定向姿态机动控制问题。首先分析双体卫星工作机理,建立载荷舱与平台舱姿态模型,推导磁浮机构线圈和磁钢相对距离的数学表达式。提出基于PD控制的载荷舱对日姿态机动、平台舱姿态跟踪以及两舱避碰等控制策略。在此基础上,为提高平台舱姿态跟踪速度,设计反步控制器对平台舱飞轮的动态特性进行补偿。进一步,为提高两舱协同控制性能,对传统PD控制进行改进,提出基于变增益PD控制的载荷舱姿态机动控制律,将两舱相对姿态信息包含在载荷舱对日姿态机动控制律中,有效降低了两舱碰撞风险,提高了两舱姿态机动速度。仿真结果表明,本文控制算法能有效实现双体卫星对日定向,且能避免两舱碰撞。  相似文献   

9.
The Urey organic and oxidant detector consists of a suite of instruments designed to search for several classes of organic molecules in the martian regolith and ascertain whether these compounds were produced by biotic or abiotic processes using chirality measurements. These experiments will also determine the chemical stability of organic molecules within the host regolith based on the presence and chemical reactivity of surface and atmospheric oxidants. Urey has been selected for the Pasteur payload on the European Space Agency's (ESA's) upcoming 2013 ExoMars rover mission. The diverse and effective capabilities of Urey make it an integral part of the payload and will help to achieve a large portion of the mission's primary scientific objective: "to search for signs of past and present life on Mars." This instrument is named in honor of Harold Urey for his seminal contributions to the fields of cosmochemistry and the origin of life.  相似文献   

10.
A review is made on the design philosophy of groundbased multichannel spectrometers for measurements of solar irradiation reflected from various natural formations within the visible and near infrared range of the electromagnetic spectrum. Important specifics of the new generation ground-based spectrometers are the improved functional possibilities for the scientific experiments, management and for the specialized data processing. The instruments enable the performance both of automated mode of operation and within the payload of complex measurement equipment. The incorporation of proper computer techniques accounts for the increased intelligence and adaptivity which provides for the precise resolution necessary for the scientific methodology and applicable tasks.  相似文献   

11.
针对GPS卫星有效载荷的对抗需求,研究了GPS卫星有效载荷对抗技术。介绍了GPS卫星有效载荷技术的演化及其技术特征,根据GPS卫星系统的特点提出了基于伴星平台的天基反GPS卫星对抗系统方案,分析了GPS卫星信号的侦察和干扰技术。  相似文献   

12.
The concept of a European remote sensing satellite (ERDSAT) launched by ARIANE is characterized by a model payload, consisting of a synthetic aperture radar (SAR) and an optical multispectral scanner with 9 channels, for land applications or coastal zone missions. The mission goal of ERDSAT is based on European user requrements where a strong need for optical and microwave sensor operation on board the same satellite in a simultaneous or sequential mode is expressed. A data collection system is included. The proposed spacecraft is three-axes-stabilized and has a Sun-synchronous, near polar circular orbit with 750 km altitude. The selected configuration separates payload module and bus module. A thermostable carbon fibre grating structure is the central framework of the satellite. Each major subsystem is housed in a separate compartment and can be integrated and tested individually. First mass estimates resulted in 450 kg for the payload and 880 kg for the bus. The maximum power needed is 1750 W (for 6 min three times a day), which will be provided by a 1330 W solar array and two batteries. A “low cost” model philosophy is defined; the time schedule envisages a program start in late 1980 and a launch possibility end of 1985.  相似文献   

13.
Small satellite's role in future hyperspectral Earth observation missions   总被引:1,自引:0,他引:1  
M. Guelman  F. Ortenberg   《Acta Astronautica》2009,64(11-12):1252-1263
Along with various advanced satellite onboard sensors, an important place in the near future will belong to hyperspectral instruments, considered as suitable for different scientific, commercial and military missions. As was demonstrated over the last decade, hyperspectral Earth observations can be provided by small satellites at considerably lower costs and shorter timescales, even though with some limitations on resolution, spectral response, and data rate. In this work the requirements on small satellites with imaging hyperspectral sensors are studied. Physical and technological limitations of hyperspectral imagers are considered. A mathematical model of a small satellite with a hyperspectral imaging spectrometer system is developed. The ability of the small satellites of different subclasses (micro- and mini-) to obtain hyperspectral images with a given resolution and quality is examined. As a result of the feasibility analysis, the constraints on the main technical parameters of hyperspectral instruments suitable for application onboard the small satellites are outlined. Comparison of the data for designed and planned instruments with simulation results validates the presented approach to the estimation of the small satellite size limitations. Presented analysis was carried out for sensors with conventional filled aperture optics.  相似文献   

14.
某型号卫星磁性分析与控制   总被引:1,自引:0,他引:1  
某型号卫星的有效载荷之一高能望远镜对磁场敏感,因此在设计阶段即需分析卫星在轨时载荷所处的磁场环境,并尽可能提高载荷的抗磁场干扰能力。文章根据卫星的构型,对整星的磁场分布进行了计算;对载荷的抗磁场干扰能力进行了测试;对载荷的磁屏蔽方案进行了仿真与测试;分析了抗磁场干扰设计对整星磁性控制的影响,证明卫星可以满足总磁矩不大于5.0 A?m2的姿态控制要求。  相似文献   

15.
遥感卫星在轨微振动测量数据分析   总被引:1,自引:0,他引:1  
王光远  周东强  赵煜 《宇航学报》2015,36(3):261-267
介绍某遥感卫星的在轨微振动测量方案,并从背景噪声、扰动源特征、星体结构传递特征三个方面对测量数据进行分析。由测试数据发现,控制力矩陀螺(CMG)和动量轮引起的局部扰动较大,而传递至有效载荷处的扰动主要由CMG和双轴天线引起。星体结构对微振动有良好的衰减作用,有效载荷安装面的响应相对于振源得到了大幅衰减。  相似文献   

16.
未来战场环境瞬息万变,唯有进行快速、准确、高效的战场信息获取、决策与分发,方能求得先机。传统的单星单载荷模式,由于信息获取方式的局限,应对突发事件能力有限。多体制载荷信息融合与协同应用的需求应运而生。首先以多体制载荷协同高效应用为出发点,将此需求分解为多体制载荷的信息高效获取和多体制载荷信息的高效应用两方面,并加以阐述。然后介绍了以多手段协同高效信息获取为出发点设计的综合运用型卫星的主要技术特点,该星以电子载荷引导光学成像任务为主体。最后,针对多体制载荷协同高效的需求,梳理了电子与成像协同体制下的发展建议。  相似文献   

17.
提出了一种适用于通信卫星转发器分系统测控数据传输的5线制同步串行总线,支持30个终端同时接入,改变了通信卫星平台传统的点对点式的遥测遥控信息传输方式,大大减少了通信舱内电缆数量;并在某通信卫星载荷舱上进行了应用,使卫星载荷舱质量减少几十千克,提升了卫星平台的有效载荷能力。文章设计的串行总线提供标准的接口电路,有利于有效载荷设备的扩容,可以推广至更多的有效载荷设备,构成其之间的测控信息网络。  相似文献   

18.
The European Student Moon Orbiter (ESMO) spacecraft is a student-built mini satellite being designed for a mission to the Moon. Designing and launching mini satellites are becoming a current trend in the space sector since they provide an economic way to perform innovative scientific experiments and in-flight demonstration of novel space technologies. The generation, storage, control, and distribution of the electrical power in a mini satellite represents unique challenges to the power engineer since the mass and volume restrictions are very stringent. Regardless of these problems, every subsystem and payload equipment must be operated within their specified voltage band whenever they required to be turned on. This paper presents the preliminary design of a lightweight, compact, and reliable power system for ESMO that can generate 720 W. Some of the key components of the EPS include ultra triple-junction (UTJ) GaAs solar cells controlled by maximum power point trackers, and high efficiency Li-ion secondary batteries recharged in parallel.  相似文献   

19.
The Quantum Science Experiment Satellite(QUSES) is the first satellite deployed successfully in nearEarth space for quantum scientific experiments in the world, in which experimental study on the fundamental questions of quantum mechanics can be done under the condition of a spatial scale about 500-2000 km. QUSES is performing a Quantum Key Distribution(QKD) experiment from satellite to ground station for testing of the global quantum secure communication network, and performing a Quantum Entanglement Distribution(QED) and Quantum Teleportation(QT) experiments with the purpose of testing the completeness of quantum mechanics theory at a sufficient spatial scale. The payload of QUSES is com posed of a Quantum Key Transceiver(QKT), a Quantum Entanglement Transmitter(QET), a Quantum Entangled-photon Source(QES), a Quantum Experiment Control Processor(QCP) and a Coherent laser Communication Terminator(CCT). This paper introduces the technical scheme of QUSES, including the requirement analysis, composi tion, technical innovation, on-orbit status and prospect of development for the future.  相似文献   

20.
The RELEС scientific payload of the Vernov satellite launched on July 8, 2014 includes the DRGE spectrometer of gamma-rays and electrons. This instrument comprises a set of scintillator phoswich-detectors, including four identical X-ray and gamma-ray detector with an energy range of 10 kev to 3 MeV with a total area of ~500 cm2 directed to the atmosphere, as well as an electron spectrometer containing three mutually orthogonal detector units with a geometric factor of ~2 cm2 sr. The aim of a space experiment with the DRGE instrument is the study of fast phenomena, in particular Terrestrial gamma-ray flashes (TGF) and magnetospheric electron precipitation. In this regard, the instrument provides the transmission of both monitoring data with a time resolution of 1 s, and data in the event-by-event mode, with a recording of the time of detection of each gamma quantum or electron to an accuracy of ~15 μs. This makes it possible to not only conduct a detailed analysis of the variability in the gamma-ray range, but also compare the time profiles with the results of measurements with other RELEC instruments (the detector of optical and ultraviolet flares, radio-frequency and low-frequency analyzers of electromagnetic field parameters), as well as with the data of ground-based facility for thunderstorm activity. This paper presents the first catalog of Terrestrial gamma-ray flashes. The criterion for selecting flashes required in order to detect no less than 5 hard quanta in 1 ms by at least two independent detectors. The TGFs included in the catalog have a typical duration of ~400 μs, during which 10–40 gamma-ray quanta were detected. The time profiles, spectral parameters, and geographic position, as well as a result of a comparison with the output data of other Vernov instruments, are presented for each of candidates. The candidate for Terrestrial gamma-ray flashes detected in the near-polar region over Antarctica is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号