首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
More than 1000 coronal mass ejections (CMEs) caused by different types of coronal transients have been analyzed up to now, based on the images from white light coronagraphs on board the OSO 7, Skylab, P78-1, and SMM spacecraft. In many cases, the CME images lead us to the impression of loop-like, more planar structures, similar to those of prominence structures often seen in H pictures. There is increasing evidence, though, for a three-dimensional bubble- or cloud-like structure of CMEs. In several cases, CMEs directed toward the earth (or away from it) were identified, as their outer fronts emerged on all sides of the coronagraph's occulting disk, thus suggesting a bubble-like appearance.There now appears to be unanimity about the crucial role that magnetic reconnection plays during the transient process. Recently, direct evidence was found for the pinch-off of CMEs, both from optical observations and from in situ measurements of isolated magnetic clouds' following transient shock waves. However, the detailed sequence of events during the generation of a CME is still unclear.Interplanetary shock waves associated with the CMEs are usually restricted in latitudinal extent to about the angular width of the optically observed CMEs. They may be somewhat less restricted in longitudinal extent. A nearly 1 1 association between CMEs and shock waves measured in situ from spacecraft (Helios 1 and 2, IMP 7 and 8, ISEE 3, Pioneer Venus) can be established, provided the CME and the spacecraft were in the same longitudinal and latitudinal range and the CME speed exceeds 400 km s–1. Around the past solar activity minimum all CMEs observed were centered at solar latitudes of less than 60°. Around solar maximum, a significant fraction of CMEs also originated from the polar regions. Thus, there is a good chance that the Ulysses spaceprobe will encounter many shocks caused by both low- and high-latitude CMEs, when it finally starts its journey over the Sun's poles.  相似文献   

2.
Lin  Naiguo  Kellogg  P.J.  MacDowall  R.J.  Gary  S.P. 《Space Science Reviews》2001,97(1-4):193-196
Observations of ion acoustic waves in the solar wind during the first and second orbit of the Ulysses spacecraft are presented. The observations show variations of the wave activity with the heliolatitude and with the phase of the solar cycle. The interrelationships between the wave intensity and the electron heat flux and the ratio of electron to proton temperature, T e/T p, are examined. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The relatively faint optical and UV emission from non-radiative shock waves provides diagnostics for processes related to cosmic ray acceleration in collisionless shocks. Emission line profiles and intensities can be used to determine the efficiencies of electron-ion and ion-ion thermal equilibration, which influence the population of fast particles injected into the acceleration process. It is found that T e/T p declines with shock speed and that T i is roughly proportional to mass in fast shocks. Important information about cosmic ray precursors may be available, but the interpretation is still somewhat ambiguous. The compression ratios in shocks which efficiently accelerate cosmic rays are predicted to be substantially larger than the factor of 4 expected for a strong shock in a = 5/3 perfect gas, and some limits may be available from observations.  相似文献   

4.
Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’.  相似文献   

5.
This paper introduces and describes the radio and plasma wave investigation on the STEREO Mission: STEREO/WAVES or S/WAVES. The S/WAVES instrument includes a suite of state-of-the-art experiments that provide comprehensive measurements of the three components of the fluctuating electric field from a fraction of a hertz up to 16 MHz, plus a single frequency channel near 30 MHz. The instrument has a direction finding or goniopolarimetry capability to perform 3D localization and tracking of radio emissions associated with streams of energetic electrons and shock waves associated with Coronal Mass Ejections (CMEs). The scientific objectives include: (i) remote observation and measurement of radio waves excited by energetic particles throughout the 3D heliosphere that are associated with the CMEs and with solar flare phenomena, and (ii) in-situ measurement of the properties of CMEs and interplanetary shocks, such as their electron density and temperature and the associated plasma waves near 1 Astronomical Unit (AU). Two companion papers provide details on specific aspects of the S/WAVES instrument, namely the electric antenna system (Bale et al., Space Sci. Rev., 2007) and the direction finding technique (Cecconi et al., Space Sci. Rev., 2007).  相似文献   

6.
The emission mechanisms for solar radio bursts   总被引:1,自引:0,他引:1  
Emission mechanisms for meter- solar radio bursts are reviewed with emphasis on fundamental plasma emission.The standard version of fundamental plasma emission is due to scattering of Langmuir waves into transverse waves by thermal ions. It may be treated semi-quantitatively by analogy with Thomson scattering provided induced scattering is unimportant. A physical interpretation of induced scattering is given and used to derive the transfer equation in a semi-quantitative way. Solutions of the transfer equation are presented and it is emphasized that standard fundamental emission with brightness temperatures 109 K can be explained only under seemingly exceptional circumstances.Two alternative fundamental emission mechanisms are discussed: coalescence of Langmuir waves with low-frequency waves and direct conversion due to a density inhomogeneity. It is pointed out for the first time that the coalescence process (actually a related decay process) can lead to amplified transverse waves. The coalescence process saturates when the effective temperature T t of the transverse waves reaches the effective temperature T l of the Langmuir waves. This saturation occurs provided the energy density in the low-frequency waves exceeds a specific value which is about 10-9 of the thermal energy density for emission from the corona at 100 MHz. It is suggested that direct emission has been dismissed as a possible alternative without adequate justification.Second harmonic plasma emission is discussed and compared with fundamental plasma emission. It also saturates at T t T l , and this saturation should occur in the corona roughly for T l 1015 K. If fundamental plasma emission is attributed to coalescence with low-frequency waves, then for T l 1015 K the brightness temperatures at the two harmonics should be equal and equal to T l . This offers a natural explanation for the approximate equality of the two brightness temperature often found in type II and type III bursts.Analytic treatments of gyro-synchrotron emission are reviewed. The application of the mechanism to moving type IV bursts is discussed in view of bursts with 1010 K at 43 MHz.  相似文献   

7.
Electrons with near-relativistic (E≳30 keV, NrR) and relativistic (E≳0.3 MeV) energies are often observed as discrete events in the inner heliosphere following solar transient activity. Several acceleration mechanisms have been proposed for the production of those electrons. One candidate is acceleration at MHD shocks driven by coronal mass ejections (CMEs) with speeds ≳1000 km s−1. Many NrR electron events are temporally associated only with flares while others are associated with flares as well as with CMEs or with radio type II shock waves. Since CME onsets and associated flares are roughly simultaneous, distinguishing the sources of electron events is a serious challenge. On a phenomenological basis two classes of solar electron events were known several decades ago, but recent observations have presented a more complex picture. We review early and recent observational results to deduce different electron event classes and their viable acceleration mechanisms, defined broadly as shocks versus flares. The NrR and relativistic electrons are treated separately. Topics covered are: solar electron injection delays from flare impulsive phases; comparisons of electron intensities and spectra with flares, CMEs and accompanying solar energetic proton (SEP) events; multiple spacecraft observations; two-phase electron events; coronal flares; shock-associated (SA) events; electron spectral invariance; and solar electron intensity size distributions. This evidence suggests that CME-driven shocks are statistically the dominant acceleration mechanism of relativistic events, but most NrR electron events result from flares. Determining the solar origin of a given NrR or relativistic electron event remains a difficult proposition, and suggestions for future work are given.  相似文献   

8.
Solar cycle 23 witnessed the most complete set of observations of coronal mass ejections (CMEs) associated with the Ground Level Enhancement (GLE) events. We present an overview of the observed properties of the GLEs and those of the two associated phenomena, viz., flares and CMEs, both being potential sources of particle acceleration. Although we do not find a striking correlation between the GLE intensity and the parameters of flares and CMEs, the solar eruptions are very intense involving X-class flares and extreme CME speeds (average ~2000?km/s). An M7.1 flare and a 1200?km/s CME are the weakest events in the list of 16 GLE events. Most (80?%) of the CMEs are full halos with the three non-halos having widths in the range 167 to 212?degrees. The active regions in which the GLE events originate are generally large: 1290?msh (median 1010?msh) compared to 934?msh (median: 790?msh) for SEP-producing active regions. For accurate estimation of the CME height at the time of metric type?II onset and GLE particle release, we estimated the initial acceleration of the CMEs using flare and CME observations. The initial acceleration of GLE-associated CMEs is much larger (by a factor of 2) than that of ordinary CMEs (2.3?km/s2 vs. 1?km/s2). We confirmed the initial acceleration for two events for which CME measurements are available in the inner corona. The GLE particle release is delayed with respect to the onset of all electromagnetic signatures of the eruptions: type?II bursts, low frequency type?III bursts, soft X-ray flares and CMEs. The presence of metric type?II radio bursts some 17?min (median: 16?min; range: 3 to 48?min) before the GLE onset indicates shock formation well before the particle release. The release of GLE particles occurs when the CMEs reach an average height of ~3.09?R s (median: 3.18?R s ; range: 1.71 to 4.01?R s ) for well-connected events (source longitude in the range W20–W90). For poorly connected events, the average CME height at GLE particle release is ~66?% larger (mean: 5.18?R s ; median: 4.61?R s ; range: 2.75–8.49?R s ). The longitudinal dependence is consistent with shock accelerations because the shocks from poorly connected events need to expand more to cross the field lines connecting to an Earth observer. On the other hand, the CME height at metric type?II burst onset has no longitudinal dependence because electromagnetic signals do not require magnetic connectivity to the observer. For several events, the GLE particle release is very close to the time of first appearance of the CME in the coronagraphic field of view, so we independently confirmed the CME height at particle release. The CME height at metric type?II burst onset is in the narrow range 1.29 to 1.8?R s , with mean and median values of 1.53 and 1.47?R s . The CME heights at metric type?II burst onset and GLE particle release correspond to the minimum and maximum in the Alfvén speed profile. The increase in CME speed between these two heights suggests an increase in Alfvénic Mach number from?2 to?3. The CME heights at GLE particle release are in good agreement with those obtained from the velocity dispersion analysis (Reames in Astrophys. J. 693:812, 2009a; Astrophys. J. 706:844, 2009b) including the source longitude dependence. We also discuss the implications of the delay of GLE particle release with respect to complex type?III bursts by ~18?min (median: 16?in; range: 2 to 44?min) for the flare acceleration mechanism. A?similar analysis is also performed on the delay of particle release relative to the hard X-ray emission.  相似文献   

9.
We discuss the recent progress in studying the absolute and convective instabilities of circularly polarized Alfvén waves (pump waves) propagating along an ambient magnetic field in the approximation of ideal magnetohydrodynamics (MHD). We present analytical results obtained for pump waves with small dimensionless amplitude a, and compare them with numerical results valid for arbitrary a. The type of instability, absolute or convective, depends on the velocity U of the reference frame where the pump wave is observed with respect to the rest plasma. One of the main results of our analysis is that the instability is absolute when U l < U < U r and convective otherwise. We study the dependences of U l and U r on a and the ratio of the sound speed to the Alfvén speed b. We also present the results of calculation of the increment of the absolute instability on U for different values of a and b. When the instability is convective (U < U l or U > U r) we consider the signalling problem, and show that spatially amplifying waves exist only when the signalling frequency is in two symmetric frequency bands. Then, we write down the analytical expressions determining the boundaries of these frequency bands and discuss how they agree with numerically calculated values. We also present the dependences of the maximum spatial amplification rate on U calculated both analytically and numerically. The implication of the obtained results on the interpretation of observational data from space missions is discussed. In particular, it is shown that circularly polarized Alfvén waves propagating in the solar wind are convectively unstable in a reference frame of any realistic spacecraft.  相似文献   

10.
This article uses a 2/4 functional epoxy blend system (E-54/AG-80) cured with diaminodiphenyl sulphone(DDS) as a raw material and develops a methodological procedure to establish a cure kinetic model with isothermal and dynamic differential scanning calorimeter(DSC) method and a gelation model with round-disk compression mode dynamic mechanical analyzer(DMA), thus acquiring a series of experimental data. Characteristic temperatures such as initial glass transition temperature Tg0, gelation glass transition temperature gelTg, and infinite glass transition temperature Tg∞ are determined. The cure degree at gelation is turned out to be 0.45, while gelTg is found to be 70.2 °C. The data are then used to form time-temperature-transition(TTT) diagram of the system, which serves to be a tool for process optimization of epoxy-matrix composites. A new cure processing is therefore derived from the TTT diagram. The final phase structure obtained from a controllable method is identified through scanning electron microscope(SEM) photographs to be of ‘ex-situ’ phase morphology.  相似文献   

11.
We review important studies in the field of stratosphere-ionosphere coupling, including recent studies of wave motions of planetary waves, atmospheric tides and internal gravity waves in the atmosphere. The interrelation between stratospheric sudden warmings and winter anomaly of radio absorption, a dynamical model of stratospheric sudden warmings and some production mechanisms of intensified electron density in the D region are discussed. Other topics presented are atmospheric tides in the lower thermosphere including dynamo action, and internal gravity waves, by which we intend to explain travelling ionospheric disturbances in the F 2 region and sporadic E layer at midlatitude (wave-enhanced sporadic E). Thermospheric winds are also reviewed and wind effects on the F 2 layer are discussed. For each atmospheric event systematic observations of suitable physical quantities with proper time and spatial intervals are desirable.  相似文献   

12.
Distributions with excess numbers of superthermal particles are common in space environments. They are well modelled by the isotropic kappa distribution, or, where magnetic effects are important, the kappa-Maxwellian. This paper presents a review of some studies of electrostatic and electromagnetic waves in such plasmas, based on the associated generalized plasma dispersion functions, Z κ and Z κM. In particular, the effects of low values of κ are considered, i.e. strongly accelerated distribution functions. Recently the full susceptibility tensor for oblique propagation of electromagnetic waves in a kappa-Maxwellian magnetoplasma has been established and has been applied to the study of whistler waves.  相似文献   

13.
The interaction of travelling interplanetary shock waves with the bow shock-magnetosphere system is considered. We consider the general case when the interplanetary magnetic field is oblique to the Sun-planetary axis, thus, the interplanetary shock is neither parallel nor perpendicular. We find that an ensemble of shocks are produced after the interaction for a representative range of shock Mach numbers. First, we find that the system S + R CS S + appears after the collision of travelling fast shock waves S + (Mach number M = 2 to 7) with the bow shock. Here, S and R represent the slow shock wave and slow rarefaction wave, and C represents the contact surface. It is shown that in the presence of an interplanetary field that is inclined by 45° to the radial solar wind velocity vector, the waves R and S are weak waves and, to the first degree of approximation, the situation is similar to the previously studied normal perpendicular case. The configuration, R + C m S S + or R + C m R S + where C m is the magnetopause, appears as the result of the fast shock wave's collision with the magnetopause. In this case the waves S and R are weak. The fast rarefaction wave reflected from the magnetosphere is developed similar to the case for the collision of a perpendicular shock. The shock wave intensity is varied for Mach numbers from 2 to 10. Thus, in the limits of the first approximation, the validity of the one-dimensional consideration of the nonstationary interaction of travelling interplanetary shock waves with the bow shock-magnetosphere system is proved. The appearance of the fast rarefaction wave, R 4, decreasing the pressure on the magnetosphere of the Earth after the abrupt shock-like contraction, is proved. A possible geomagnetic effect during the global perturbation of the SSC or SI+ type is discussed.An invited paper presented at STIP Workshop on Shock Waves in the Solar Corona and Interplanetary Space, 15–19 June, 1980, Smolenice, Czechoslovakia.  相似文献   

14.
CMEs have been observed for over 30 years with a wide variety of instruments. It is now possible to derive detailed and quantitative information on CME morphology, velocity, acceleration and mass. Flares associated with CMEs are observed in X-rays, and several different radio signatures are also seen. Optical and UV spectra of CMEs both on the disk and at the limb provide velocities along the line of sight and diagnostics for temperature, density and composition. From the vast quantity of data we attempt to synthesize the current state of knowledge of the properties of CMEs, along with some specific observed characteristics that illuminate the physical processes occurring during CME eruption. These include the common three-part structures of CMEs, which is generally attributed to compressed material at the leading edge, a low-density magnetic bubble and dense prominence gas. Signatures of shock waves are seen, but the location of these shocks relative to the other structures and the occurrence rate at the heights where Solar Energetic Particles are produced remains controversial. The relationships among CMEs, Moreton waves, EIT waves, and EUV dimming are also cloudy. The close connection between CMEs and flares suggests that magnetic reconnection plays an important role in CME eruption and evolution. We discuss the evidence for reconnection in current sheets from white-light, X-ray, radio and UV observations. Finally, we summarize the requirements for future instrumentation that might answer the outstanding questions and the opportunities that new space-based and ground-based observatories will provide in the future.  相似文献   

15.
We present the regression models for determining the total excess air ratio αΣ and gas temperature T g * upstream of the high-pressure turbine formed on the basis of the engine parameter values that are regularly measured. The sensitivity of the regression models presented to the sensor and instrumentation precision is studied. The errors of measuring and calculating αΣ and T g * in different altitude-speed engine operation conditions are shown.  相似文献   

16.
Soft X-ray (SXR) waves, EIT waves, and Hα Moreton waves are all associated with coronal mass ejections (CMEs). The knowledge of the characteristics about these waves is crucial for the understanding of CMEs, and hence for the space weather researches. MHD numerical simulation is performed, with the consideration of the quiet Sun atmosphere, to investigate the CME/flare processes. On the basis of the numerical results, SXR, EUV, and Hα images of the eruption are synthesized, where SXR waves, EIT waves, and Hα Moreton waves are identified. It confirms that the EIT waves, which border the expanding dimmming region, are produced by the successive opening (or stretching) of the closed magnetic field lines. Hα Moreton waves are found to propagate outward synchronously with the SXR waves, lagging behind the latter spatially by ~27 Mm in the simulated scenario. However, the EIT wave velocity is only a third of the Moreton wave velocity. The synthesized results also suggest that Hα± 0.45Å would be the best off-band for the detection of Hα Moreton waves.  相似文献   

17.
This paper is a review of the basic theoretical dynamical properties of an atmosphere with an extended temperature strongly bound by gravity. The review begins with the historical developments leading up to the realization that the only dynamical equilibrium of an atmosphere with extended temperature is supersonic expansion. It is shown that sufficient conditions for supersonic expansion are T(r) declining asymptotically less rapidly than 1/r, or the density at the base of the corona being less than N b given by (40) if no energy is available except through thermal conductivity, or the temperature falling within the limits given by (18) if T N -1 throughout the corona. Less extended temperatures lead to equilibria which are subsonic or static. The hypothetical case of a corona with no energy supply other than thermal conduction from its base is considered at some length because the equations may be solved by analytical methods and illustrate the transition from subsonic to supersonic equilibrium as the temperature becomes more extended. Comparison with the actual corona shows that the solar corona is actively heated for some distance into space by wave dissipation.The dynamical stability of the expanding atmosphere is demonstrated, and in a later section the radial propagation of acoustic and Alfvén waves through the atmosphere and wind is worked out. The calculations show that the magnetometer will probably detect waves more easily than the plasma instrument, but that both are needed to determine the mode and direction of the wave. An observer in the wind at the orbit of Earth can listen to disturbances generated in the corona near the sun and in turbulent regions in interplanetary space.The possibility that the solar corona is composed of small-scale filaments near the sun is considered. It is shown that such filamentary structure would not be seen at the orbit of Earth. It is pointed out that the expansion of a non-filamentary corona seems to lead to too high a calculated wind density at the orbit of Earth to agree with the present observations, unless T(r) is constant or increases with r. A filamentary corona, on the other hand, would give the observed wind density for declining T(r).It is shown that viscosity plays no important role in the expansion of an atmosphere either with or without a weak magnetic field. The termination of the solar wind, presumably between 10–103 AU, is discussed briefly. The interesting development here is the interplanetary L recently observed, which may come from the interstellar neutral hydrogen drifting into the outer regions of the solar wind.Theory is at the present time concerned with the general dynamical principles which pertain to the expansion equilibrium of an atmosphere. It is to be expected that the rapid progress of direct observations of the corona and wind will soon permit more detailed studies to be carried out. It is important that the distinction between detailed empirical models and models intended to illustrate general principles be kept clearly in mind at all times.This work was supported by the National Aeronautics and Space Administration under Grant NASA-NsG-96-60.  相似文献   

18.
This chapter reviews how our knowledge of CMEs and CME-associated phenomena has been improved, since the launch of the SOHO mission, thanks to multi-wavelength analysis. The combination of data obtained from space-based experiments and ground based instruments allows us to follow the space-time development of an event from the bottom of the corona to large distances in the interplanetary medium. Since CMEs originate in the low solar corona, understanding the physical processes that generate them is strongly dependant on coordinated multi-wavelength observations. CMEs display a large diversity in morphology and kinematic properties, but there is presently no statistical evidence that those properties may serve to group them into different classes. When a CME takes place, the coronal magnetic field undergoes restructuring. Much of the current research is focused on understanding how the corona sustains the stresses that allow the magnetic energy to build up and how, later on, this magnetic energy is released during eruptive flares and CMEs. Multi-wavelength observations have confirmed that reconnection plays a key role during the development of CMEs. Frequently, CMEs display a rather simple shape, exhibiting a well known three-part structure (bright leading edge, dark cavity and bright knot). These types of events have led to the proposal of the ‘`standard model’' of the development of a CME, a model which predicts the formation of current sheets. A few recent coronal observations provide some evidence for such sheets. Other more complex events correspond to multiple eruptions taking place on a time scale much shorter than the cadence of coronagraph instruments. They are often associated with large-scale dimming and coronal waves. The exact nature of these waves and the physical link between these different manifestations are not yet elucidated. We also discuss what kind of shocks are produced during a flare or a CME. Several questions remain unanswered. What is the nature of the shocks in the corona (blast-wave or piston-driven?) How they are related to Moreton waves seen in Hα? How they are related to interplanetary shocks? The last section discusses the origin of energetic electrons detected in the corona and in the interplanetary medium. “Complex type III-like events,”which are detected at hectometric wavelengths, high in the corona, and are associated with CMEs, appear to originate from electrons that have been accelerated lower in the corona and not at the bow shock of CMEs. Similarly, impulsive energetic electrons observed in the interplanetary medium are not the exclusive result of electron acceleration at the bow shocks of CMEs; rather they have a coronal origin.  相似文献   

19.
The mutual impedance experiment on GEOS-1 provides an original diagnostic of the thermal electron population. The electron density N e, and temperature T e, are derived from the plasma frequency and Debye length, the values of which determine the shape of the frequency dependent mutual impedance curves. The existing limits of the method are pointed out. They may be instrumental or arise from a lack of theoretical development, for instance when the steady magnetic field or the drift velocity of the plasma cannot be neglected. Nevertheless, first geophysical results have been derived, using measurements obtained on the dayside of the equatorial magnetosphere where most of the data enter within the above limits. In particular, we have drawn a map of the dayside magnetosphere, in terms of densities, Debye lengths, temperatures, at geocentric distances of 4 to 7 Earth radii. The conventional shape of the plasmasphere is recognized, but the temperatures obtained are lower than expected (2 eV at apogee, outside the plasmasphere). The influence of the magnetic activity on apogee measurements is reported: N e values and A m indices are shown to be correlated, but it is not the case for T e and A m. Finally, detailed T e and N e profiles are shown, and the presence of a plasmapause boundary is discussed.  相似文献   

20.
We review evidence that led to the view that acceleration at shock waves driven by coronal mass ejections (CMEs) is responsible for large particle events detected at 1 AU. It appears that even if the CME bow shock acceleration is a possible model for the origin of rather low energy ions, it faces difficulties on account of the production of ions far above 1 MeV: (i) although shock waves have been demonstrated to accelerate ions to energies of some MeV nucl–1 in the interplanetary medium, their ability to achieve relativistic energies in the solar environment is unproven; (ii) SEP events producing particle enhancements at energies 100 MeV are also accompanied by flares; those accompanied only by fast CMEs have no proton signatures above 50 MeV. We emphasize detailed studies of individual high energy particle events which provide strong evidence that time-extended particle acceleration which occurs in the corona after the impulsive flare contributes to particle fluxes in space. It appears thus that the CME bow shock scenario has been overvalued and that long lasting coronal energy release processes have to be taken into account when searching for the origin of high energy SEP events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号