首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electron density and temperature,as measured by the mutual impedance experiment on board GEOS-1
Authors:P M E Decreau  C Beghin  M Parrot
Institution:(1) Université d'Orléans et Centre de Recherche en Physique de l'Environnement, 45045 Orleans Cédex, France;(2) Centre de Recherche en Physique de l'Environnement, 45045 Orleans Cédex, France
Abstract:The mutual impedance experiment on GEOS-1 provides an original diagnostic of the thermal electron population. The electron density N e, and temperature T e, are derived from the plasma frequency and Debye length, the values of which determine the shape of the frequency dependent mutual impedance curves. The existing limits of the method are pointed out. They may be instrumental or arise from a lack of theoretical development, for instance when the steady magnetic field or the drift velocity of the plasma cannot be neglected. Nevertheless, first geophysical results have been derived, using measurements obtained on the dayside of the equatorial magnetosphere where most of the data enter within the above limits. In particular, we have drawn a map of the dayside magnetosphere, in terms of densities, Debye lengths, temperatures, at geocentric distances of 4 to 7 Earth radii. The conventional shape of the plasmasphere is recognized, but the temperatures obtained are lower than expected (sim2 eV at apogee, outside the plasmasphere). The influence of the magnetic activity on apogee measurements is reported: N e values and A m indices are shown to be correlated, but it is not the case for T e and A m. Finally, detailed T e and N e profiles are shown, and the presence of a plasmapause boundary is discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号