首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
二次气射流角对涡轮叶问燃烧室的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究二次气射流角对涡轮叶间燃烧室的影响,设计了3种带有不同二次气射流角的涡轮叶间燃烧室模型,利用FLUENT软件的Realizablek-8湍流模型、PDF燃烧模型、D0辐射模型和离散相模型对燃烧室的流动和燃烧进行数值模拟。结果表明:涡轮叶间燃烧室具有高效率(99.2%)的特点,增大二次气射流角可使切向动量分量增加、油滴蒸发变慢、出口温度场分布不均匀、总压损失增加。  相似文献   

2.
采用两大类模型,对应用射流涡流燃烧结构方案的高压涡轮导向器性能进行数值模拟研究。利用基于压力的隐式稳态求解器以及尺度适应模拟湍流模型(SAS),完成了涡轮内增燃燃烧室内的流动与燃烧过程的数值模拟。研究结果表明:无论是在高压涡轮导向器顶部还是在底部耦合驻涡凹腔,对导向器叶间流场形态、流体流动转折角、导向器叶间静压力场的形态以及分布、总压损失均无明显影响,维持了原有导向器的基本性能;高压涡轮导向器耦合射流涡流燃烧结构,增加了涡轮叶片叶间的平均温度以及涡轮导向器出口的平均温度。  相似文献   

3.
郑海飞  唐豪  李明  莫妲 《航空动力学报》2014,29(5):1053-1061
为了使航空发动机达到高推质比、低燃油消耗率、低污染以及拓宽稳定工作范围的目标,应使用涡轮导向器增燃技术在涡轮导向器叶片间喷油点火再次燃烧,提高涡轮内燃气温度,从而提高发动机的总体性能.阐述了涡轮导向器增燃技术具有提高航空发动机总体性能的潜在优势,分析研究了该技术中组织燃烧的关键技术、参数和机理问题,得出如下结论:①对于射流旋流方案,径向凹槽对燃烧室出口温度分布起决定性作用;降低燃烧凹环内当量比,可提高燃烧效率,从而降低CO,UHC(未燃碳氢化合物),NOx等污染物排放量.②当二次气流角为60°时,射流涡流方案各项燃烧性能较好.  相似文献   

4.
射流预冷装置温降与流阻特性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为了满足基于某型传统涡轮发动机射流预冷技术验证的需求,以射流预冷装置的温降和流阻特性研究为基础,设计了1种高效蒸发、低流阻的射流预冷装置,搭建了国内首套基于全尺寸的地面模拟试验系统,通过试验验证的方法研究了喷入介质的流量变化和进气温度变化对温降和流阻特性的影响,验证了射流预冷技术的有效性。结果表明:发动机入口来流温度不变时,射流预冷装置的温降特性主要取决于喷入介质的流量变化;随着来流温度的升高,射流预冷装置的介质蒸发率提高,来流降温量也会随之增大;通过调节喷射介质的流量,可将发动机风扇前气流温度维持在80~120℃;流阻特性主要取决于射流预冷装置自身,而介质喷射对流阻特性几乎不产生影响;射流预冷装置的总压损失小于4%,且随着来流温度的升高,总压损失有所减小。  相似文献   

5.
开展了进口空气马赫数、驻涡区余气系数影响涡轮级间燃烧室燃烧性能的试验研究,获得了燃烧室性能参数的变化规律:随着进口马赫数的增大,总压损失从1.5%增加到7%,流阻系数变化不大,出口温度分布系数OTDF(overall temperature distribution factor)也相应变大;对于不同的进口马赫数,燃烧效率、OTDF随驻涡区余气系数的增大分别为降低和基本不变;燃烧效率大多在70%~85%之间;试验中得到的在燃烧室进口温度为473K时的最大贫油熄火余气系数为9.7.   相似文献   

6.
带级间燃烧的涡轴发动机性能仿真   总被引:1,自引:1,他引:0  
为了分析涡轮级间燃烧技术对常规涡轴发动机性能提升的潜力,针对两种带级间燃烧的涡轴发动机性能方案,分别建立了部件级稳态性能计算模型,并通过仿真对比分析了级间燃烧室不同温升及总压损失条件下发动机的整机性能,结果表明:级间燃烧室总压恢复系数和温升对单位功率和总功率影响较大,当级间燃烧室总压恢复系数为0.95、温升为200K时,保持进口空气流量不变,涡轴发动机单位功率和总功率增加17%,耗油率增加约11%;在高的级间燃烧室温升条件下,适当增加动力涡轮导向器面积,改善涡轮流通能力,有利于进一步提高整机功率,降低动力涡轮前温度;两种方案对比,在涡轮过渡段设置级间燃烧室空间上更好布置,性能上更占优势.   相似文献   

7.
陈幸  胡斌  王中豪  赵巍  赵庆军 《推进技术》2021,42(12):2744-2753
为了促进空气涡轮火箭发动机燃烧室内来自压气机的空气和流经涡轮的富燃燃气的掺混、提高燃烧效率,本文基于空气涡轮火箭发动机燃烧室入口结构参数设计了波瓣混合器,并采用数值模拟方法通过调整张角及瓣宽比对波瓣结构进行优化。结果表明:1)保持外张角不变,增大波瓣内张角可以有效改善内涵燃料在燃烧室中心轴附近区域燃烧不完全的状况;2)在内、外张角相同的条件下,通过减小瓣宽b2使瓣宽比 大于1可以提升掺混及燃烧效率;3)相对于非反应流动,波瓣诱导流向涡在反应流中强度更高,沿径向向外移动的速度也更快;4)带有波瓣结构的燃烧室内,因内、外涵气流掺混造成的总压损失很小,80%以上的总压损失是由加热造成的。  相似文献   

8.
导叶冷却对涡轮级性能影响的数值研究   总被引:2,自引:1,他引:1  
针对某高压燃气三维扭转涡轮导叶全叶身冷气射流进行了数值模拟,详细分析了在设计转速下改变冷气流量对叶片气动性能、冷却效率和叶栅通道损失的影响;对比分析了在冷气流量相同的条件下,改变转速对涡轮级性能影响.结果表明:不同冷气流量对导叶冷却孔附近区域的静压影响较为明显,而对下游转子的型面静压影响不大;导叶冷气射流对叶栅通道内主流气流角影响较小;冷气流量占主流流量由2.50%增加至6.25%,叶片绝热壁温降幅达11.19%,导叶叶栅通道总压损失和能量损失分别增加了12.95%和12.01%,而涡轮级功率和级效率分别降低了2.39%和1.51%.   相似文献   

9.
为了研究基于涡流发生器(VG)射流原理的先进旋涡燃烧室(AVC)燃烧及流动性能,对不同射流参数(射流前倾角α、侧倾角β、射流孔径D及射流比R)时燃烧流场进行了数值模拟。结果表明,基于涡流发生器射流原理的AVC性能优于传统射流AVC。增大α及β,可以提高燃气掺混率,增大凹腔中心湍流度,并使更多的热能转化为燃烧室出口动能,但是总压损失明显增大。增大侧倾角β可使凹腔内高温分布更均匀。随着射流孔径D及射流比R的增大,燃烧室整体温度分布先增大后减小。当α=60°,β=60°时燃烧室能够在贫燃条件下实现高温、低压降、低污染的稳定燃烧。  相似文献   

10.
涡流冷壁旋流燃烧室的数值模拟   总被引:1,自引:1,他引:0       下载免费PDF全文
徐舟  曾卓雄  徐义华 《推进技术》2015,36(3):436-442
为了获得涡流冷壁旋流燃烧室的双旋涡结构对其燃烧流动性能的影响规律,改变切向入口的进口速度,对其内部流场进行了数值模拟。结果表明:在燃烧工况下,双旋涡结构较冷态时更难形成;随着切向入口的进口速度增加,涡流冷壁旋流燃烧室的燃烧效率较旋流燃烧室增大2%左右,壁面温度从1200K降低至600K,出口CO2的排放量降低;双旋涡结构会增加燃烧室的总压损失,但是增加的程度很小。  相似文献   

11.
高雷  郑群  王超  邓庆锋 《推进技术》2013,34(6):768-774
为了改进船用汽轮机低压缸末两级涡轮的气动性能,对叶栅和子午流道进行了改型设计,并运用计算流体力学方法对原型方案和改型方案的内部流场进行了数值模拟.计算结果表明,在流量不变的情况下,这种综合优化设计方法能使汽轮机性能大幅提高,最终汽轮机效率提高了2.162%,功率增加了1.7%.最后对次末级动叶进行了环形叶栅试验,测量了叶片表面压力和总压损失沿叶高的分布.试验结果表明,改型设计优化了动叶中的载荷分布,从而有效地降低了叶栅二次流损失和叶型损失.  相似文献   

12.
通过数值模拟方法研究了襟翼射流对涡轮叶栅流动的控制,给出了从某型涡轮叶片压力面尾缘附近由面积为0.785 mm2的矩形射流喷口喷射不同流量射流,对不同流动状态下涡轮叶栅流动的影响效果。结果表明,射流襟翼能够有效控制通道内的主流流量和流动方向;当射流流量达到主流流量的4%时,在三组雷诺数下主流流量平均减少了12.57%,气流转折角平均增大了4.82%;随着射流流量的增大,叶片载荷系数有所降低,同时总压损失会增大。  相似文献   

13.
机匣喷气位置对涡轮间隙流动控制的影响   总被引:4,自引:4,他引:0       下载免费PDF全文
牛茂升  臧述升 《推进技术》2009,30(5):594-598
采用数值模拟方法对利用机匣喷气方式控制涡轮间隙流动进行了研究。结果显示,采用机匣喷气方法能降低通过间隙的流量,推迟间隙涡形成,减小通道内二次流分布区域,使得涡区相对总压增大。采取适当的喷气位置,可以提高涡轮效率。不同轴向位置喷气提高涡轮效率的原理不同,30%轴向弦长位置喷气主要是减小上通道涡损失,而60%轴向弦长位置喷气主要是减小间隙涡损失。最大效率出现在30%轴向弦长位置喷气1%主流流量时,效率可以提高0.3341%。  相似文献   

14.
为了探究不同进口总压分布对涡轮气动损失的影响规律及作用机理,以GE-E3发动机高压涡轮的第1级导叶为研究对象,通过设定总压畸变高度和强度,利用数值模拟方法对多种涡轮进口1维分布形式下的涡轮气动性能展开研究。结果表明:当端区总压强于中展区总压时,静叶压力面附近流体向中展区汇集碰撞,出口效率降低;随进口总压畸变强度的提高,静叶出口效率线性降低;当端区总压弱于中展区总压时,静叶出口效率变化不大;单级涡轮出口效率随总压畸变形式变化的规律与静叶的类似。  相似文献   

15.
叶尖间隙高度对某高压涡轮级损失分布的影响   总被引:7,自引:6,他引:1  
利用三维湍流数值模拟方法模拟某一级跨声速高压涡轮流场,研究转子叶片叶尖间隙高度对涡轮性能及二次流动损失分布的影响.研究结果表明:转子叶尖间隙高度对涡轮性能影响明显,随着间隙高度的增加涡轮效率明显降低,但效率的降低速度与间隙高度并非简单线性关系,间隙高度增加1%相对叶高,涡轮性能最快下降1.8%.分析表明:涡轮转子间隙高度变化主要影响转子叶栅通道上部流动并对通道内的损失分布产生影响.其中损失最严重的区域为转子通道中部至叶片尾缘处;尾缘后的损失则对间隙的高度最敏感,随着间隙高度的增加,叶片尾缘后损失明显增加.   相似文献   

16.
为探寻高压涡轮转子内应用射流涡流方案对原涡轮转子性能的影响,采用原高压涡轮转子模型(model-B1)和应用射流涡流方案的高压涡轮转子模型(model-B2和model-B3)两个大类进行研究,其中model-B2和model-B3用于对比分析涡轮转子叶片上有无径向凹腔对原涡轮转子性能的影响。数值模拟过程中,应用了基于压力的隐式稳态求解器,以及尺度适应模拟湍流模型(SAS)。结果表明:在涡轮转子内应用射流涡流方案,主流通道内的温度分布十分均匀,涡轮转子叶片进出口截面处的平均温度基本相等;涡轮转子叶片带径向凹腔时,应用射流涡流方案可实现涡轮内的等温燃烧过程;高压涡轮转子叶片的落压比与原涡轮转子叶片的落压比基本相等,射流涡流方案的应用不会对原有涡轮转子叶片的做功能力和做功效果造成影响。  相似文献   

17.
利用CFD数值模拟方法研究了GE-E~3第一级高压涡轮的端区流场。针对间隙泄漏流流场损失,采用叶尖射流的主动控制方法,分析和比较了由此对端区流场及涡轮效率的影响。结果表明:在涡轮动叶叶尖采用合适的射流孔、射流流量或射流角度,可有效提高涡轮效率;涡轮端区流场对射流孔位置变化最为敏感,射流流量次之,而射流角度变化的作用有限;采用多孔射流方案时,涡轮效率最大可提高0.7%;采用叶尖射流主动控制的最终效果,取决于射流带来的正面作用与负面影响。  相似文献   

18.
高压涡轮冷却叶片叶顶结构气动与传热   总被引:1,自引:5,他引:1  
虞跨海  杨茜  岳珠峰 《推进技术》2012,33(2):174-178
开展了叶顶结构及间隙变化对高压涡轮冷却叶片气动与传热性能影响的研究,建立了四种不同叶顶结构的涡轮冷却叶片几何与数值分析模型,进行了高精度流热固耦合分析,得到了不同叶顶结构及间隙对涡轮冷却叶片气动与传热性能影响的数值分析结果。结果表明:不带射流孔叶片随着叶顶间隙的增大,总压损失增加;由于近壁面处存在的涡流,凹槽叶顶结构能够减少叶顶燃气泄漏,阻碍叶顶平面高温燃气的流动与热交换;叶顶射流孔冷却效果明显,能够大幅度降低叶顶平面温度。在相同叶顶间隙下,凹槽射流叶片具有最高的气动性能。  相似文献   

19.
超声速来流与燃料的充分掺混是超声速燃烧的关键技术,直接关系到吸气式高超声速推进系统的总体性能。本文通过在射流口前安装翼片式涡流发生器以促进燃料与空气的掺混。基于SST k-ω湍流模型的RANS方法,对带有翼片式涡流发生器的超燃冲压发动机燃烧室模型内氢气横向喷流冷流流场进行了数值模拟,对比分析涡流发生器高度和长度不同的条件下燃烧室内的流场结构、涡流强度、氢气与空气掺混特性、燃烧室总压损失的规律。结果表明,翼片式涡流发生器能够提高涡流强度并大幅提高燃烧室内的掺混性能。随着涡流发生器高度和长度的增加,流场结构间的干扰增强,导致涡流强度和穿透深度增加,从而提升掺混效率。与不安装涡流发生器情况相比,涡流发生器能提升氢燃料的穿透深度超过170%,减少燃料掺混距离70%以上。更加复杂的流场结构同时会增大燃烧室的总压损失,并随着涡流发生器高度和长度的增加而增大。相较于掺混性能的提升,总压损失的增大幅度相对小很多,说明通过合理的参数选择,翼片式涡流发生器能够有效提升燃烧室的掺混性能。  相似文献   

20.
实验研究了襟翼射流对涡轮叶栅流动的控制,实验测量了某型涡轮叶片压力面尾缘附近由直径为1mm的射流喷口喷射不同流量射流,对不同流动状态下涡轮叶栅流动的影响效果.结果表明:射流襟翼能够有效控制通道内的主流质量流量和流动方向;在进口雷诺数为71742,马赫数为0.048,湍流度为1%状态下,当射流流量达到主流质量流量的4%时,主流质量流量减少了13.32%,气流转折角增大了6.34%;随着射流流量的增大,叶型载荷系数有所降低,同时总压损失系数会增大.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号