首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
CubeSats offer a flexible and low-cost option to increase the scientific and technological return of small-body exploration missions. ESA’s Hera mission, the European component of the Asteroid Impact and Deflection Assessment (AIDA) international collaboration, plans on deploying two CubeSats in the proximity of binary system 65803 Didymos, after arrival in 2027. In this work, we discuss the feasibility and preliminary mission profile of Hera’s Milani CubeSat. The CubeSat mission is designed to achieve both scientific and technological objectives. We identify the design challenges and discuss design criteria to find suitable solutions in terms of mission analysis, operational trajectories, and Guidance, Navigation, & Control (GNC) design. We present initial trajectories and GNC baseline, as a result of trade-off analyses. We assess the feasibility of the Milani CubeSat mission and provide a preliminary solution to cover the operational mission profile of Milani in the close-proximity of Didymos system.  相似文献   

2.
立方星是一种模块化的微小卫星,在科学探测与专业人才培养等方面具有重要意义。针对目前立方星任务逐渐从近地轨道向深空扩展的发展趋势,以立方星月球深空任务为背景,利用商业器件设计并实现了初步的立方星姿态控制系统,以及姿态控制系统所必需的结构、电源、计算机等立方星子系统,同时给出了姿态测试平台的设计方案及其硬件实现。在所搭建硬件平台上,通过测量飞轮控制器的阻尼系数,对控制模型进行参数辨识与标定,获得了与数值仿真一致的实物测试结果。针对姿态控制系统设计了PD控制律,并在控制实验中实现了至任意姿态角的机动控制。  相似文献   

3.
CubeSats has evolved from purely educational tools, to useful platforms for technology demonstration and many practical applications. This paper reviews a CubeSat constellation mission involving 3 CubeSats launched into orbit on Sep. 25th 2015, aiming to demonstrate the integrated application of low-cost CubeSat technologies with distributed payloads using a group of satellites, as well as to demonstrate several new technologies. The mission scenario, the satellite system design, the innovative technologies and instruments or devices used on the CubeSats and the in-orbit experimental results and the payload data analysis, as well as some experiences and lessons learned, are presented and summaried.  相似文献   

4.
5.
The increasing number of commercial, technological and scientific missions for CubeSats poses several concerns about the topic of space junk and debris mitigation. As no regulation is currently in place, innovative solutions are needed to mitigate the impact that Low Earth Orbit objects can have during uncontrolled re-entry and the associated potential events of surface collision. We investigated the requirements, in terms of materials selection, for the development of a 3D-printed structural bus able to withstand loads during launch and in-orbit operations, with the objectives to be as light as possible and requiring the least amount of heat for demise during atmospheric re-entry. The selection indicated magnesium alloys as the best candidates to improve the reference material, aluminium 6061 T6, resulting in both mass-reduction and improved demisability. We also analysed how the relative importance of these two objectives can modify the selection of materials: if minimizing the heat to disintegration were valued more highly than lightness, for example, the new best candidates would become tin alloys. Our analysis, furthermore, suggested the importance of Liquid Crystal Polymer as the sole plastic material approaching the performance of the best metal choices. This contribution, thus, provides novel insight in the field of 3D-printed materials for the fast-growing CubeSat segment, complying with the debris mitigation initiatives promoted by space agencies and institutions.  相似文献   

6.
PolarLight is a compact soft X-ray polarimeter onboard a CubeSat, which was launched into a low-Earth orbit on October 29, 2018. In March 2019, PolarLight started full operation, and since then, regular observations with the Crab nebula, Sco X-1, and background regions have been conducted. Here we report the operation, calibration, and performance of PolarLight in the orbit. Based on these, we discuss how one can run a low-cost, shared CubeSat for space astronomy, and how CubeSats can play a role in modern space astronomy for technical demonstration, science observations, and student training.  相似文献   

7.
One of the advantages that drive nanosatellite development is the potential of multi-point observation through constellation operation. However, constellation deployment of nanosatellites has been a challenge, as thruster operations for orbit maneuver were limited due to mass, volume, and power. Recently, a de-orbiting mechanism using magnetic torquer interaction with space plasma has been introduced, so-called plasma drag. As no additional hardware nor propellant is required, plasma drag has the potential in being used as constellation deployment method. In this research, a novel constellation deployment method using plasma drag is proposed. Orbit decay rate of the satellites in a constellation is controlled using plasma drag in order to achieve a desired phase angle and phase angle rate. A simplified 1D problem is formulated for an elementary analysis of the constellation deployment time. Numerical simulations are further performed for analytical analysis assessment and sensitivity analysis. Analytical analysis and numerical simulation results both agree that the constellation deployment time is proportional to the inverse square root of magnetic moment, the square root of desired phase angle and the square root of satellite mass. CubeSats ranging from 1 to 3?U (1–3?kg nanosatellites) are examined in order to investigate the feasibility of plasma drag constellation on nanosatellite systems. The feasibility analysis results show that plasma drag constellation is feasible on CubeSats, which open up the possibility of CubeSat constellation missions.  相似文献   

8.
The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research.  相似文献   

9.
It is estimated that more than 22,300 human-made objects are in orbit around the Earth, with a total mass above 8,400,000 kg. Around 89% of these objects are non-operational and without control, which makes them to be considered orbital debris. These numbers consider only objects with dimensions larger than 10 cm. Besides those numbers, there are also about 2000 operational satellites in orbit nowadays. The space debris represents a hazard to operational satellites and to the space operations. A major concern is that this number is growing, due to new launches and particles generated by collisions. Another important point is that the development of CubeSats has increased exponentially in the last years, increasing the number of objects in space, mainly in the Low Earth Orbits (LEO). Due to the short operational time, CubeSats boost the debris population. One of the requirements for space debris mitigation in LEO is the limitation of the orbital lifetime of the satellites, which needs to be lower than 25 years. However, there are space debris with longer estimated decay time. In LEÓs, the influence of the atmospheric drag is the main orbital perturbation, and is used in maneuvers to increment the losses in the satellite orbital energy, to locate satellites in constellations and to accelerate the decay.The goal of the present research is to study the influence of aerodynamic rotational maneuver in the CubeSat?s orbital lifetime. The rotational axis is orthogonal to the orbital plane of the CubeSat, which generates variations in the ballistic coefficient along the trajectory. The maneuver is proposed to accelerate the decay and to mitigate orbital debris generated by non-operational CubeSats. The panel method is selected to determine the drag coefficient as a function of the flow incident angle and the spinning rate. The pressure distribution is integrated from the satellite faces at hypersonic rarefied flow to calculate the drag coefficient. The mathematical model considers the gravitational potential of the Earth and the deceleration due to drag. To analyze the effects of the rotation during the decay, multiple trajectories were propagated, comparing the results obtained assuming a constant drag coefficient with trajectories where the drag coefficient changes periodically. The initial perigees selected were lower than 400 km of altitude with eccentricities ranging from 0.00 to 0.02. Six values for the angular velocity were applied in the maneuver. The technique of rotating the spacecraft is an interesting solution to increase the orbit decay of a CubeSat without implementing additional de-orbit devices. Significant changes in the decay time are presented due to the increase of the mean drag coefficient calculated by the panel method, when the maneuver is applied, reducing the orbital lifetime, however the results are independent of the angular velocity of the satellite.  相似文献   

10.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   

11.
The Space Life Sciences Training Program (SLSTP) is an intensive, six-week training program held every summer since 1985 at the Kennedy Space Center (KSC). A major goal of the SLSTP is to develop a cadre of qualified scientists and engineers to support future space life sciences and engineering challenges. Hand-picked, undergraduate college students participate in lectures, laboratory sessions, facility tours, and special projects: including work on actual Space Shuttle flight experiments and baseline data collection. At NASA Headquarters (HQ), the SLSTP is jointly sponsored by the Life Sciences Division and the Office of Equal Opportunity Programs: it has been very successful in attracting minority students and women to the fields of space science and engineering. In honor of the International Space Year (ISY), 17 international students participated in this summer's program. An SLSTP Symposium was held in Washington D.C., just prior to the World Space Congress. The Symposium attracted over 150 SLSTP graduates for a day of scientific discussions and briefings concerning educational and employment opportunities within NASA and the aerospace community. Future plans for the SLSTP include expansion to the Johnson Space Center in 1995.  相似文献   

12.
Sample return missions from a comet nucleus and the Mars surface are currently under study in the US, USSR, and by ESA. Guidance on Planetary Protection (PP) issues is needed by mission scientists and engineers for incorporation into various elements of mission design studies. Although COSPAR has promulgated international policy on PP for various classes of solar system exploration missions, the applicability of this policy to sample return missions, in particular, remains vague. In this paper, we propose a set of implementing procedures to maintain the scientific integrity of these samples. We also propose that these same procedures will automatically assure that COSPAR-derived PP guidelines are achieved. The recommendations discussed here are the first step toward development of official COSPAR implementation requirements for sample return missions.  相似文献   

13.
The current lunar exploration has changed from a single scientific exploration to science and resource utilization. On the basis of the previous lunar exploration, Chinese scientists and technical experts have proposed an overall plan to preliminarily build a lunar research station on the lunar South Pole by several missions before 2035, exploring of the moon, as well as the use of lunar platforms and in-site utilization of resources. In addition, China will also explore Mars, asteroids and Jupiter and its moons. This paper briefly introduces the ideas of Chinese scientists and technical experts on the lunar and deep space exploration.   相似文献   

14.
空间科学实验地面支持系统平台   总被引:1,自引:0,他引:1  
相对于其他空间任务, 空间科学实验具有用户分散、实验进程控制 (遥科学实验)要求实时或准实时、多种类型空间科学数据处理要求等特点. 针对空间科学实验的特点和对地面支持系统的要求, 结合实践八号卫星(SJ-8)、探测双星(TC-1, TC-2) 和神舟系列飞船(SZ) 的空间科学实验地面支持系统的任务完成情况, 以及未来空间科学实验任务的需求, 提出了地面支持系统平台的构架设想. 该系统平台支持空间科学实验的状态监视与控制, 支持遥科学实验, 能够支持空间科学实验数据标准产品的定制处理, 满足空间科学实验多任务的要求, 具有通用性和可扩展性.   相似文献   

15.
吴季 《空间科学学报》2018,38(2):139-146
人类进入太空以来已经发射了近1万个人造航天器,其中大约10%执行的是空间科学和探测任务.近年来中国经济快速发展,提供了更多的基础研究经费,经济转型也对创新驱动发展提出了更高需求,中国对空间科学的投入开始逐年增加.2015年以来先后成功发射了悟空号、实践十号、墨子号和慧眼号4颗科学卫星,天宫2号空间实验室也成功实施了一系列空间科学实验.重要科学发现和成果正在不断地产出.空间科学卫星任务(或称计划)与应用卫星从提出到评价都有很大不同,因此有必要对其所具有的特点进行分析,从而引导空间科学界从科学团队、技术团队到管理团队提高认识,确保未来的空间科学任务发挥最大效益,获得最大科学产出.   相似文献   

16.
In the late 1980's and in the 1990's we will have the opportunity to increase our knowledge of the sun, the heliosphere, and their influences on the earth's magnetosphere/ionosphere/atmosphere system. We should be able to gain increased knowledge of the physical mechanisms that drive the sun, the three-dimensional structure of the heliosphere, and the flow of energy and momentum from the sun through the interplanetary medium to the magentosphere/ionosphere/atmosphere system. We also may be able to evaluate the influence of the solar radiative output on the earth's atmosphere. Through well-coordinated national and international efforts we can plan and carry forward successful programs to accomplish these scientific goals. Space missions, ground-based observing networks, and rocket and balloon campaigns are needed and should be well-coordinated. Wide and easy access of data will help ensure the effectiveness of these programs. Retrospective studies, theory, modelling, simulations, and data analysis are also vital elements of research in this area. There are important scientific opportunities for scientists from all countries.  相似文献   

17.
The European Stratospheric Balloon Observatory (ESBO) initiative aims at simplifying the access to stratospheric balloon missions. We plan to provide platforms and support with instrument design in order to support scientists. During the design process, the inevitable question of qualification for the harsh flight conditions arises. Unfortunately, there is no existing standard for qualification of stratospheric ballooning hardware. Thus, we developed a qualification procedure for use within ESBO and similar projects.In this paper, we present our analysis of the environmental conditions in the stratosphere. While conditions at typical balloon float altitudes are similar to the space environment, there are also some relevant differences. For example, the thermal environment is dominated by radiation and thermal conduction, but the remaining atmosphere still supports a certain amount of convection. The remaining atmospheric pressure in the stratosphere also leads to reduced arcing distances. Vibrational loads are far less than for space missions, but quasi-static or shock loads may occur. The criticality of radiation increases with mission duration.Based on the environmental conditions, we present the qualification procedures for ESBO, which are based on the European Cooperation for Space Standardization (ECSS) standards for space systems. Overtesting against too high requirements leads to overengineering, driving mission cost and mitigating the advantages of balloons over space missions. Therefore, we modified the ECSS standards to fit typical scientific ballooning missions over several days at altitudes up to 40 km. Furthermore, we analyzed design rules for space systems with regard to their relevance for scientific ballooning, including material and component selection. We present the experience from the hardware qualification process for the ESBO prototype STUDIO (Stratospheric UV Demonstrator of an Imaging Observatory). Even though boundary conditions are different for each individual mission, we aimed for a broader approach: We investigated more general requirements for scientific ballooning missions to support future flights.  相似文献   

18.
Any vehicle propelled by solid rocket motors (SRMs) must include an attitude control system capable of dealing with the torque generated by thrust misalignment. In order to expand the application of SRMs on CubeSats, an attitude control system utilizing moving mass actuators is discussed. The present research develops an eight-degree-of-freedom simulation model of a 2U CubeSat with two moving mass actuators. That model also considers the influence of propellant combustion processes. By analyzing the model disturbance source and systematic coupling, the key layout parameters are designed and a simplified control model is proposed. The controller is derived based on a combination of backstepping and sliding mode techniques. An orbit maneuver from 300 km circular orbit to 300 and 500 km elliptical orbit using this attitude control system is verified.  相似文献   

19.
20.
空间科学任务协同设计论证存在设计方案耦合强,数据一致性差,数据变更难,数据与流程脱节等问题.为了解决上述问题,建立了典型空间科学任务的多层数字化模型;采用图形化方式对论证流程进行建模,并建立流程与数据的映射关系;通过共享数据池的方式为多岗位用户提供多方案数据协同机制;采用消息总线对数据变更进行及时提醒;利用方案依赖关系矩阵来判别方案耦合关系,最终自动合并任务总体设计方案.作为一个分布式平台,空间科学任务协同设计平台采用Eclipse RCP和Spring技术架构,整合了Hibernate、工作流Activiti5等中间件,提供统一门户,支持多岗位、多任务、多方案、多版本的管理能力,提供论证流程监控、数据协同交互等功能.结合某空间科学任务论证验证了该平台的有效性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号