首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 898 毫秒
1.
We use a simplified atmospheric general circulation model (AGCM) to investigate the response of the lower atmosphere to thermal perturbations in the lower stratosphere. The results show that generic heating of the lower stratosphere tends to weaken the sub-tropical jets and the tropospheric mean meridional circulations. The positions of the jets, and the extent of the Hadley cells, respond to the distribution of the stratospheric heating, with low latitude heating displacing them poleward, and uniform heating displacing them equatorward. The patterns of response to the low latitude heating are similar to those found to be associated with solar variability in previous observational data analysis, and to the effects of varying solar UV radiation in sophisticated AGCMs. In order to investigate the chain of causality involved in converting the stratospheric thermal forcing to a tropospheric climate signal we conduct an experiment which uses an ensemble of model spin-ups to analyse the time development of the response to an applied stratospheric perturbation. We find that the initial effect of the change in static stability at the tropopause is to reduce the eddy momentum flux convergence in this region. This is followed by a vertical transfer of the momentum forcing anomaly by an anomalous mean circulation to the surface, where it is partly balanced by surface stress anomalies. The unbalanced part drives the evolution of the vertically integrated zonal flow. We conclude that solar heating of the stratosphere may produce changes in the circulation of the troposphere even without any direct forcing below the tropopause. We suggest that the impact of the stratospheric changes on wave propagation is key to the mechanisms involved.  相似文献   

2.
Observational evidence of the 11-year solar cycle (SC) modulation of stratosphere temperatures and winds from the ERA-40 dataset is reviewed, with emphasis on the Northern winter hemisphere. A frequency modulation of sudden warming events is noted, with warmings occurring earlier in solar minimum periods than in solar maximum periods. The observed interaction between the influence of the SC and the quasi biennial oscillation (QBO) on the frequency of sudden warmings is noted as a possible clue for understanding their mechanism of influence. A possible transfer route for the 11-year solar cycle from the equatorial stratopause region to the lowest part of the stratosphere is proposed, via an influence on sudden warming events and the associated induced meridional circulation. SC and QBO composites of zonal wind anomalies show anomalous wind distributions in the subtropical upper stratosphere in early winter. Mechanistic model experiments are reviewed that demonstrate a sensitivity of sudden warmings to small wind anomalies in this region. Various diagnostics from these experiments are shown, including EP fluxes and their divergence and also the synoptic evolution of the polar vortex, in order to understand the mechanism of the influence. Some recent GCM experiments to investigate the SC/QBO interaction are also described. They simulate reasonably well the observed SC/QBO interaction of sudden warming events and appear to support the hypothesis that tropical/subtropical upper stratospheric wind anomalies are an important influence on the timing of sudden warmings.  相似文献   

3.
The Influence of Total Solar Irradiance on Climate   总被引:7,自引:0,他引:7  
Cubasch  U.  Voss  R. 《Space Science Reviews》2000,94(1-2):185-198
To estimate the effect of the solar variability on the climate, two estimates of the solar intensity variations during the last three centuries have been used as forcing in numerical simulations. The model employed to carry out the experiments was the same coupled global ocean-atmosphere model used in a number of studies to assess the effect of the anthropogenic greenhouse gases on climate. The near surface temperature and the tropospheric temperature distribution shows a clear response to the variability of the solar input. Even the thermohaline circulation reacts on the large amplitudes in the forcing. In the stratosphere, the response pattern is similar as in the observations, however, the 11-year cycle found in the forcing data does not excite an appreciable response. This might be due to the missing parameterisation of the increase in the UV-radiation at the solar cycle maximum and the connected increase of the stratospheric ozone concentration.  相似文献   

4.
The climate response to changes in radiative forcing depends crucially on climate feedback processes, with the consequence that solar and greenhouse gas forcing have both similar response patterns in the troposphere. This circumstance complicates significantly the attribution of the causes of climate change. Additionally, the climate system displays a high level of unforced intrinsic variability, and significant variations in the climate of many parts of the world are due to internal processes. Such internal modes contribute significantly to the variability of climate system on various time scales, and thus compete with external forcing in explaining the origin of past climate extremes. This highlights the need for independent observations of solar forcing including long-term consistent observational records of the total and spectrally resolved solar irradiance. The stratospheric response to solar forcing is different from its response to greenhouse gas forcing, thus suggesting that stratospheric observations could offer the best target for the identification of the specific influence of solar forcing on climate.  相似文献   

5.
The response of the lower and middle atmosphere to variations in solar irradiance typical of those observed to take place over the 11-year activity cycle has been investigated. The effects on radiative heating rates of changing total solar irradiance, solar spectral irradiance and two different assumptions concerning stratospheric ozone have been studied with a radiative transfer code. The response in the stratosphere depends on the changes specified in the ozone distribution which is not well known. A general circulation model (GCM) of the atmosphere up to 0.1 mbar (about 65 km) has been used to study the impacts of these changes on the thermodynamical structure. The results in the troposphere are very similar to those reported by Haigh99 using a quite different GCM. In the middle atmosphere the model is able to reproduce quite well the observed seasonal evolution of temperature and wind anomalies. Calculations of radiative forcing due to solar variation are presented. These show that the thermal infrared component of the forcing, due to warming of the stratosphere, is important but suggest a near balance between the longwave and shortwave effects of the increased ozone so that ozone change may not be important for net radiative forcing. However, the structure of the ozone change does affect the detailed temperature response and the spectral composition of the radiation entering the troposphere.  相似文献   

6.
J. Langen 《Space Science Reviews》2006,125(1-4):371-379
This paper summarises the workshop session on recent space data. Most presentations addressed the intense solar storm in October–November 2003. Large perturbations of atmospheric trace gas concentrations, notably NO2 and HNO3, were found over extended areas around the magnetic poles in the mesosphere and stratosphere, extending over many weeks in the stratosphere. The impact on total ozone seems to be very limited although some more subtle investigations are still to be done. Several new space instruments with many innovative data products have been introduced. Very good coverage in vertically resolved observations of many chemical species is reached for stratospheric chemistry and dynamics research. Data have already been used to improve stratospheric models. Data continuity is an issue. However, the greatest concern is the lack of any suitable future space instrumentation for tropospheric research (air quality and climate forcing/carbon cycle) as well as UTLS problems (climate/chemistry interaction, stratosphere/troposphere exchange).  相似文献   

7.
This paper studies the response of the middle atmosphere to the 11-year solar cycle. The study is based on numerical simulations with the Hamburg Model of the Neutral and Ionized Atmosphere (HAMMONIA), a chemistry climate model that resolves the atmosphere from the Earth’s surface up to about 250 km. Results presented here are obtained in two multi-year time-slice runs for solar maximum and minimum conditions, respectively. The magnitude of the simulated annual and zonal mean stratospheric response in temperature and ozone corresponds well to observations. The dynamical model response is studied for northern hemisphere winter. Here, the zonal mean wind change differs substantially from observations. The statistical significance of the model’s dynamical response is, however, poor for most regions of the atmosphere. Finally, we discuss several issues that render the evaluation of model results with available analyses of observational data of the stratosphere and mesosphere difficult. This includes the possibility that the atmospheric response to solar variability may depend strongly on longitude.  相似文献   

8.
The record of dynamical structure reveals a systematic variation that operates coherently with the 11-yr variation of UV irradiance. Involving periods shorter than 5 years, the systematic variation reflects the influence of the QBO on the polar-night vortex. It has the same basic structure as interannual changes associated with the residual mean circulation of the stratosphere. A signature of the solar cycle also appears in the direct correlation to solar flux, as recovered through regression of the entire monthly record. That signature, however, is sharply enhanced around solstice, when the residual circulation is active, and during extremal phases of the QBO. In the tropics, the solar signature follows, throughout the year, from a decadal modulation in the frequency of the QBO. The modulation is manifested to either side of the QBO’s mean frequency, in two spectral peaks where the QBO dwells: one at (24 months)−1, reflecting a Biennial Oscillation (BO), and another at (36 months)-1. Intrinsic to the QBO, those peaks are separated from its mean frequency by ∼11 years−1.Through the QBO’s residual circulation, the decadal modulation introduces anomalies in the subtropics, with symmetry about the equator. Accompanying anomalous temperature in the subtropics is a stronger signature over the winter pole. Discovered by Labitzke and van Loon 1988, that solar signature reflects anomalous downwelling of the Brewer-Dobson circulation. It is shown to follow through the BO, which is intrinsic to the QBO and its modulation of the polar-night vortex.  相似文献   

9.
We discuss the current theoretical understanding of the large scale flows observed in the solar convection zone, namely the differential rotation and meridional circulation. Based on multi-D numerical simulations we describe which physical processes are at the origin of these large scale flows, how they are maintained and what sets their unique profiles. We also discuss how dynamo generated magnetic field may influence such a delicate dynamical balance and lead to a temporal modulation of the amplitude and profiles of the solar large scale flows.  相似文献   

10.
The Sun is the most important energy source for the Earth. Since the incoming solar radiation is not equally distributed and peaks at low latitudes the climate system is continuously transporting energy towards the polar regions. Any variability in the Sun-Earth system may ultimately cause a climate change. There are two main variability components that are related to the Sun. The first is due to changes in the orbital parameters of the Earth induced by the other planets. Their gravitational perturbations induce changes with characteristic time scales in the eccentricity (~100,000 years), the obliquity (angle between the equator and the orbital plane) (~40,000 years) and the precession of the Earth’s axis (~20,000 years). The second component is due to variability within the Sun. A variety of observational proxies reflecting different aspects of solar activity show similar features regarding periodic variability, trends and periods of very low solar activity (so-called grand minima) which seem to be positively correlated with the total and the spectral solar irradiance. The length of these records ranges from 25 years (solar irradiance) to 400 years (sunspots). In order to establish a quantitative relationship between solar variability and solar forcing it is necessary to extend the records of solar variability much further back in time and to identify the physical processes linking solar activity and total and spectral solar irradiance. The first step, the extension of solar variability, can be achieved by using cosmogenic radionuclides such as 10Be in ice cores. After removing the effect of the changing geomagnetic field, a 9000-year long record of solar modulation was obtained. Comparison with paleoclimatic data provides strong evidence for a causal relationship between solar variability and climate change. It will be the subject of the next step to investigate the underlying physical processes that link solar variability with the total and spectral solar irradiance.  相似文献   

11.
van Loon  H.  Labitzke  K. 《Space Science Reviews》2000,94(1-2):259-278
The NCEP/NCAR re-analyses of the global data as high as 10hPa have made it possible to examine the influence of the 11-year sunspot cycle on the lower stratosphere over the entire globe. Previously, the signal of the solar cycle had been detected in the temperatures and heights of the stratosphere at 30hPa and below on the Northern Hemisphere by means of a data set from the Freie Universität Berlin. The global re-analyses show that the signal exists on the Southern Hemisphere too, and that it is almost a mirror image of that on the Northern Hemisphere. The largest temperature correlations with the solar cycle move from one summer hemisphere to the other, and the largest height correlations move poleward within each hemisphere from winter to summer.The correlations are weakest over the whole globe in the northern winter. If, however, one divides the data into the winters when the equatorial Quasi-Biennial Oscillation was easterly or westerly, the arctic correlations become positive and large in the west years, but insignificantly small over the rest of the earth. The correlations in the east years are negative in the Arctic but positive in the subtropics and tropics on both hemispheres.The difference between the east and west years in January-February can be ascribed to the fact that the dominant stratospheric teleconnection and the solar influence work in the same direction in the east years but oppose each other in the west years.NCAR is sponsored by the National Science Foundation.  相似文献   

12.
The nature of the climatic response to solar forcing and its geographical coherence is reviewed. This information is of direct relevance for evaluating solar forcing mechanisms and validating climate models. Interpretation of Sun-climate relationships is hampered by difficulties in (1) translating proxy records into quantitative climate parameters (2) obtaining accurate age assessments (3) elucidating spatial patterns and relationships (4) separating solar forcing from other forcing mechanisms (5) lacking physical understanding of the solar forcing mechanisms. This often limits assessment of past solar forcing of climate to identification of correlations between environmental change and solar variability. The noisy character and often insufficient temporal resolution of proxy records often exclude the detection of high frequency decadal and bi-decadal cycles. However, on multi-decadal and longer time scales, notably the ∼90 years Gleisberg, and ∼200 years Suess cycles in the 10Be and 14C proxy records of solar activity are also well presented in the environmental proxy records. The additional ∼1500 years Bond cycle may result from interference between centennial-band solar cycles. Proxy evidence for Sun-climate relations is hardly present for Africa, South America and the marine realm; probably more due to a lack of information than a lack of response to solar forcing. At low latitudes, equatorward movement of the ITCZ (upward component of the Hadley cell) occurs upon a decrease in solar activity, explaining humidity changes for (1) Mesoamerica and adjacent North and South American regions and (2) East Africa and the Indian and Chinese Monsoon systems. At middle latitudes equatorward movement of the zonal circulation during solar minima probably (co-)induces wet and cool episodes in Western Europe, and Terra del Fuego as well as humidity changes in Southern Africa, Australia, New Zealand and the Mediterranean. The polar regions seem to expand during solar minima which, at least for the northern hemisphere is evident in southward extension of the Atlantic ice cover. The forcing-induced migration of climate regimes implies that solar forcing induces a non linear response at a given location. This complicates the assessment of Sun-climate relations and calls for nonlinear analysis of multiple long and high resolution records at regional scale. Unfortunately nonlinear Sun-climate analysis is still a largely barren field, despite the fact that major global climate configurations (e.g. the ENSO and AO) follow nonlinear dynamics. The strength of solar forcing relative to other forcings (e.g. volcanism, ocean circulation patterns, tides, and geomagnetism) is another source of dynamic responses. Notably the climatic effects of tides and geomagnetism are hitherto largely enigmatic. Few but well-dated studies suggest almost instantaneous, climatic deteriorations in response to rapid decreases in solar activity. Such early responses put severe limits to the solar forcing mechanisms and the extent of this phenomenon should be a key issue for future Sun-climate studies.  相似文献   

13.
In the last 45 years I have studied the thermal structure of the atmosphere from the thermosphere down to the stratosphere, and found evidence of its variability in relationship with the change of solar irradiation during the 11-year solar cycle. I would review, in the light of recent model results, the measurements which I had made since the 1960s and which, for some of them, did not find any explanation at the time of their publication. The data were obtained by two different techniques, rockets and lidars and correspond to different regions of the atmosphere from the upper thermosphere to the stratosphere. The expectation was until recently that the atmosphere should be warmed by an increase of solar flux in the course of the solar cycle due to the increase of UV flux. It has been shown to be the case in the tropical stratosphere and at all latitudes in the upper thermosphere. But, at high and mid latitudes and at other altitudes, the reverse situation was found to exist and, until recently, this cooling observed in parts of the atmosphere with increasing solar flux had never been simulated by models. In addition to reviewing our own data, the paper will present recent results using other dataset which support our observations. It is only recently that we succeeded with a model able to tune the forcing by planetary waves at the tropopause level and thus reproduce such behaviour.  相似文献   

14.
This review recapitulates the concept of the wave-driven residual circulation in the stratosphere and mesosphere. The residual circulation is defined as the conventional mean meridional circulation corrected by the quasi-linear Stokes drift due to atmospheric waves. Only when the zonal-mean primitive equations are transformed using the residual circulation, they reflect the causality arising from the Eliassen-Palm (EP) theorem. The EP theorem states that the proper wave-mean flow interaction, defined as the EP flux divergence, vanishes for waves that are linear, conservative, and steady. In the real atmosphere, this theorem is violated mainly due to wave breaking and turbulence. The resulting EP flux divergence then drives a residual circulation which causes the observed substantial deviations from some hypothetical radiatively determined state. With regard to this dynamical control we discuss the different contributions of Rossby waves and gravity waves. Recapitulation of Lindzen’s theory of gravity-wave saturation allows us to interpret various phenomena in the upper mesosphere such as interhemispheric coupling or modulations of the gravity-wave driven branch of the residual circulation by solar proton effects and thermal tides. In addition we discuss the relative importance of changes in radiative transfer and tropospheric gravity-wave sources on the long-term temperature trends in the summer mesosphere.  相似文献   

15.
Energetic proton precipitation occurring during solar events can increase the production of odd nitrogen in the upper stratosphere and mesosphere. A very intense solar proton event (SPE) occurred on 28 October 2003. Its impact on the composition of the middle atmosphere was observed in details due to the availability of several space instruments. Here we present GOMOS observations of a strong NO2increase and a related ozone decrease in the upper stratosphere at north polar latitude. The perturbation of the chemical composition of the stratosphere was observed until the middle of December 2003. A strong NO2 increase was also observed in the south polar vortex in June-July 2003. It is tentatively attributed to the effect of an SPE with protons of moderate energy occurring on 29 May 2003. If this hypothesis is confirmed, it will imply that the global effect of SPEs on the composition of the stratosphere is underestimated when only strong energy SPEs are considered.  相似文献   

16.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   

17.
Evidence suggests that changes of solar irradiance in recent centuries have provided a significant climate forcing and that the sun has been one of the principal causes of long-term climate change. During the past two decades the solar forcing has been much smaller than the climate forcing caused by increasing greenhouse gases. But it is incorrect to assume that the sun necessarily will be an insignificant player in climate change of the 21st century. Indeed, I argue that moderate success in curtailing the growth of anthropogenic climate forcings could leave the sun playing a pivotal role in future climate change.  相似文献   

18.
Studies based on data from the past 25–45 years show that irradiance changes related to the 11-yr solar cycle affect the circulation of the upper troposphere in the subtropics and midlatitudes. The signal has been interpreted as a northward displacement of the subtropical jet and the Ferrel cell with increasing solar irradiance. In model studies on the 11-yr solar signal this could be related to a weakening and at the same time broadening of the Hadley circulation initiated by stratospheric ozone anomalies. Other studies, focusing on the direct thermal effect at the Earth’s surface on multidecadal scales, suggest a strengthening of the Hadley circulation induced by an increased equator-to-pole temperature gradient. In this paper we analyse the solar signal in the upper troposphere since 1922, using statistical reconstructions based on historical upper-air data. This allows us to address the multidecadal variability of solar irradiance, which was supposedly large in the first part of the 20th century. Using a simple regression model we find a consistent signal on the 11-yr time scale which fits well with studies based on later data. We also find a significant multidecadal signal that is similar to the 11-yr signal, but somewhat stronger. We interpret this signal as a poleward shift of the subtropical jet and the Ferrel cell. Comparing the magnitude of the two signals could provide important information on the feedback mechanisms involved in the solar climate relationship with respect to the Hadley and Ferrel circulations. However, in view of the uncertainty in the solar irradiance reconstructions, such interpretations are not currently possible.  相似文献   

19.
20.
Haarsma  R.J.  Drijfhout  S.S.  Opsteegh  J.D.  Selten  F.M. 《Space Science Reviews》2000,94(1-2):287-294
The impact of variations in solar irradiance on the variability of climate is still a topic of debate. Herein we assess the response of a coupled General Circulation Model (GCM) of intermediate complexity to an estimate of the solar variability since 1700 and to a series of idealized sinusoidal solar forcings. On the continental to global scale and averaged over periods longer than 30 years, the solar-induced variability dominates internal variability in the annual global mean surface air temperature. Locally and on the regional scale, the internal variability dominates. The dominant patterns of natural variability and explained variance are not affected by a variable solar forcing, the spectra however are sensitive. The control run shows a preferred decadal time scale of 18 year in a sea surface temperature mode associated with the North Atlantic Oscillation. The preferred decadal time scale disappears for a variable solar forcing. This is caused by small changes in oceanic circulation resulting in subsurface oceanic modes with modified structure and time scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号