首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We present a concept for a challenging in situ science mission to a primitive, binary near-Earth asteroid. A sub-400-kg spacecraft would use solar electric propulsion to rendezvous with the C-class binary asteroid (175706) 1996 FG3. A campaign of remote observations of both worlds would be followed by landing on the ∼1 km diameter primary to perform in situ measurements. The total available payload mass would be around 34 kg, allowing a wide range of measurement objectives to be addressed. This mission arose during 2004 from the activities of the ad-hoc Small Bodies Group of the DLR-led Planetary Lander Initiative. Although the particular mission scenario proposed here was not studied further per se, the experience was carried over to subsequent European asteroid mission studies, including first LEONARD and now the Marco Polo near-Earth asteroid sample return proposal for ESA’s Cosmic Vision programme. This paper may thus be of interest as much for insight into the life cycle of mission proposals as for the concept itself.  相似文献   

2.
In cooperation with Russia, the Brazilian deep space mission ASTER plans to send a small spacecraft to investigate the triple asteroid 2001-SN263. The nearest launch opportunities for this project include June 2022 and June 2025. One main exploration campaign is being planned with focus on the largest asteroid (Alpha). Among the instruments under development, a laser altimeter (named ALR) was preliminarily designed and presented in 2010–2011. Many studies to define mission and instruments requirements were performed aiming at the characterization of important issues for the successful realization of the mission. Among them, the identification of a suitable trajectory that could be followed by the ASTER spacecraft in the encounter phase, when the main campaign will take place. This paper describes the effort undertaken with focus on the laser altimeter operation. Possible encounter trajectories were modelled and simulated to identify suitable approach parameters and conditions allowing the accomplishment of the intended investigation. The simulation also involves the instrument operation, considering approach geometry, attitude, relative motion, time/date, and the dynamics of the main asteroid. From the laser altimeter point of view, keeping in mind the desired coverage results (50% minimum surface coverage of asteroid Alpha, complying with horizontal and vertical resolution requirements), results point out crucial features for the encounter trajectory, like the need for a small inclination (10-6 degrees; with respect to the asteroid's orbit), the most favourable spacecraft positioning (between the Sun and the asteroid) and pointing condition (back to the Sun), the minimum amount of achievable surface coverage (58%, focused on central areas), and the most proper time to conduct the main campaign (January 2025). Concerning the instrument, results offer refined values for divergence angle (500 to 650 μrad, half-cone), pulse repetition frequencies (from 1/20 to 1 Hz), and consequent data generation rates. A simulation tool that can use any 3D generated trajectories as input data was created for the analyses presented here. Although created for the ALR in this mission, this simple analysis tool can be adapted to other instruments in this or other missions.  相似文献   

3.
We propose a dual-rendezvous mission, targeting near-Earth asteroids, including sample-return. The mission, Asteroid Sampling Mission (ASM), consists of two parts: (i) flyby and remote sensing of a Q-type asteroid, and (ii) sampling of a V-type asteroid. The targeted undifferentiated Q-type are found mainly in the near-Earth space, and to this date have not been the target of a space mission. We have chosen, for our sampling target, an asteroid from the basaltic class (V-type), as asteroids in this class exhibit spectral signatures that resemble those of the well-studied Howardite–Eucrite–Diogenite (HED) meteorite suite. With this mission, we expect to answer specific questions about the links between differentiated meteorites and asteroids, as well as gain further insight into the broader issues of early Solar System (SS) evolution and the formation of terrestrial planets. To achieve the mission, we designed a spacecraft with a dry mass of less than 3 tonnes that uses electric propulsion with a solar-electric power supply of 15 kW at 1 Astronomical Unit (AU). The mission includes a series of remote sensing instruments, envisages landing of the whole spacecraft on the sampling target, and employs an innovative sampling mechanism. Launch is foreseen to occur in 2018, as the designed timetable, and the mission would last about 10 years, bringing back a 150 g subsurface sample within a small re-entry capsule. This paper is a work presented at the 2008 Summer School Alpbach,“Sample return from the Moon, asteroids and comets” organized by the Aeronautics and Space Agency of the Austrian Research Promotion Agency. It is co-sponsored by ESA and the national space authorities of its Member and Co-operating States, with the support of the International Space Science Institute and Austrospace.  相似文献   

4.
The asteroid 951 Gaspra is a fly-by target for the Galileo space mission. This encounter, planned for October 1991, will represent the first possibility to show an asteroid in close-up. In preparation to this close encounter an earth-based international observing campaign started in 1988 /1,2/, with the goal to provide a substantial data base on the photometric and rotational properties of this object. This will allow on one side to support and optimize the planning of the fly-by and, on the other side, to verify the accuracy of current models for the determination of shapes, surface textures, spin axis orientation and composition. In this paper we present the composite lightcurve of 951 Gaspra obtained from photoelectric and CCD observations, carried out during the 1990 apparition at the observatories of Asiago, Catania and Loiano (Italy).

We have determined the sidereal rotational period, the prograde sense of rotation, the H and G parameters and the B-V and V-R color indices.  相似文献   


5.
ASTEX (ASTeroid EXplorer) is a concept study of an in situ exploration mission to two Near-Earth-Asteroids (NEAs), which consists of an orbiting element and two individual lander units. The target candidates have different mineralogical compositions, i.e. one asteroid is chosen to be of “primitive’’ nature, the other to be a fragment of a differentiated asteroid. The main scientific goals of the ASTEX mission are the exploration of the physical, geological, and mineralogical nature of the NEAs. The higher level goal is the provision of information and constraints on the formation and evolution of our planetary system. The study identified realistic mission scenarios, defined the strawman payload as well as the requirements and options for the spacecraft bus including the propulsion system, the landers, the launcher, and assessed and defined the requirements for the mission’s operational ground segment.  相似文献   

6.
The work we present deals with the spectrometric measurements of VIRTIS instrument of the Comet P/Wirtanen planned for the Rosetta mission. This spectrometer can monitor (VIRTIS M channel: 0.250μm – 0.980μm; Δκ=20cm−1; 0.980 – 5.0 μm; Δκ = 5cm−1; VIRTIS H channel: 2.0 μm – 5.0 μm; Δκ=2cm−1) the nucleus and the coma in order to provide a general picture of coma's composition, the production of gas and dust, the relationship of coma production to surface composition and the structure and variation of mineralogy of the nucleus surface. During the mission the observation conditions of the spectroscopic investigation change due to different relative positions spacecraft/comet, and to the different illumination conditions of the surface at various distances of the comet to the Sun. The nucleus surface is continuously modified by the ice sublimation accompanied by gas and dust emission. Consequently the surface also its spectrophotometric properties changes and their monitoring can give a new insight. The important role of simulations is to predict the results of measurements in various experimental condition what, in the future, can help in interpretation of the measured data.

In this paper the first results of our simulation the radiance from the comet in the 0.25–5.0μm spectral range at two distances from the Sun (1AU and 3AU) are shown. The distance between the Rosetta orbiter and the nucleus surface as well as the sun zenith angles are taken into account according to the Rosetta mission phases. In fact the surface and coma properties vary along the comet orbit, and should be taken into account in our calculations. The optical parameters of the dust on the surface (e.g. reflectance) and in the coma (e.g. Qext) were calculated from optical constants of possible comet analogues. The thermodynamic parameters of the comet are taken from the models of comet evolution. Through this kind of modelling it is possible to identify the surface characteristics in spectra of the radiation from the surface of nucleus transmitted through the coma loaded with dust and gases.

Even if the “Rosetta mission” is postponed, with the consequence of a target change, we think that our idea and the method used for the simulations can be useful also for the new Rosetta target - the comet 67P/Churyumov Gerasimenko.  相似文献   


7.
This paper presents the preliminary mission and science analysis of a new mission concept for the large scale, low-cost exploration of Near Earth Objects (NEOs). The concept is to enable close range observations of NEOs by performing close flybys of a series of NEOs at one of their nodal points, with pairs of small spacecraft flying in formation. The paper presents a preliminary assessment of accessible asteroids and multi-target tour trajectories from data available in the JPL small-body database.The main instruments on board each spacecraft are a camera and a LIDAR which together can be used for orbit determination, surface imaging, direct asteroid ranging and asteroid mass estimation via intersatellite ranging. The paper provides a qualitative and quantitative assessment of the measurable quantities during each flyby. In particular, the feasibility of a novel method of NEO mass estimation is assessed.  相似文献   

8.
小行星防御动能撞击效果评估   总被引:1,自引:1,他引:0  
以动能撞击防御潜在威胁小行星概念为背景,采用物质点法(Material Point Method,MPM)模拟了铝弹高速撞击S型小行星的过程,将撞击结果导入引力N体–离散元动力学模型中,对其后续演化过程进行仿真,并分析了撞击后碎片对地球的威胁指数。结果显示小行星在高速撞击的作用下部分破碎,大量碎片以与撞击方向相反的速度向外喷射,从而提升了小行星的撞击偏移效果。研究采用了两种不同结构的小行星模型:完整结构(monolithic structure)的小行星在遭受撞击后会喷射出比原小行星小得多的碎片,而碎石堆结构(rubble-pile structure)的小行星在撞击作用下可分裂成大小和速度分布较为均匀的碎片。威胁指数的分析表明动能撞击方式确实有效减小了小行星的威胁程度,撞击后的最大剩余碎片可被成功偏移至安全轨道,但仍有部分碎片会与地球相撞。与完整结构相比,针对碎石堆结构小行星的撞击防御的总体效果更好,次生灾害主要为大质量碎片的撞击。研究方法可用于未来开展防御小行星的动能撞击任务的撞击条件选择和撞击结果预估。  相似文献   

9.
载人探测近地小行星的工程规模和技术难度介于载人探月和载人火星探测之间,是人类开展载人火星探测和飞向更遥远深空的跳板,对于航天技术的发展和科学问题的探索有着极其重要的意义。在调研国外载人小行星探测方案设想的基础上,结合我国航天技术现状和发展趋势,提出了一种载人小行星探测的总体方案设想,并梳理了载人小行星探测的关键技术。研究成果可以作为我国载人小行星探测任务论证和设计的有益参考。  相似文献   

10.
Sample return is playing an increasingly important role in solar system exploration. Among the possible mission on the horizon, are sample return from asteroids, comets, the Moon and Mars. A collector initially intended for near-Earth asteroids is the touch-and-go-impregnable-pad (TGIP). Here we explore the effect of temperature on its collection capabilities. Temperatures expected on near-Earth asteroid mission targets range from −43 to 36 °C. Experiments were conducted at −75, −50, −25, 23, 65, and 105 °C. It was found that the mass of sample collected by the TGIP increased almost linearly to 23 °C and then leveled off at higher temperatures. We also found that the collector did not lose its ability to collect samples after being subjected to −75 °C temperatures (essentially frozen) and then thawed. These experiments have shown that the TGIP can operate effectively at temperatures expected on near-Earth asteroids, especially if collection is performed on the sunward side of the asteroid.  相似文献   

11.
Spaceborne altimeters are common instruments onboard the deep space rendezvous spacecrafts. They provide range and topographic measurements critical in spacecraft navigation. Simultaneously, the receiver part may be utilized for Earth-to-satellite link, one way time transfer, and precise optical radiometry. The main advantage of single photon counting approach is the ability of processing signals with very low signal-to-noise ratio eliminating the need of large telescopes and high power laser source. Extremely small, rugged and compact microchip lasers can be employed. The major limiting factor, on the other hand, is the acquisition time needed to gather sufficient volume of data in repetitive measurements in order to process and evaluate the data appropriately. Statistical signal processing is adopted to detect signals with average strength much lower than one photon per measurement. A comprehensive simulator design and range signal processing algorithm are presented to identify a mission specific altimeter configuration. Typical mission scenarios (celestial body surface landing and topographical mapping) are simulated and evaluated. The high interest and promising single photon altimeter applications are low-orbit (∼10 km) and low-radial velocity (several m/s) topographical mapping (asteroids, Phobos and Deimos) and landing altimetry (∼10 km) where range evaluation repetition rates of ∼100 Hz and 0.1 m precision may be achieved. Moon landing and asteroid Itokawa topographical mapping scenario simulations are discussed in more detail.  相似文献   

12.
小行星探测电推进系统方案研究   总被引:4,自引:0,他引:4       下载免费PDF全文
小行星探测以及资源开发与利用对国家抢占深空探测主动权和制高点有着不可估量的战略意义。电推进具有高比冲、长寿命和高度自主巡航等特点,小行星探测器采用电推进执行巡航阶段轨道机动任务,将大幅减少推进剂重量和提高载重比。调研了国外小行星探测的电推进系统方案,针对我国小行星探测对电推进系统的任务需求及现有电推力器的技术基础,提出了5种电推进系统方案,并进行多维度对比,对最优方案进行了设计和关键技术梳理。  相似文献   

13.
14.
Due to the long lead time and great expense of traditional sample return mission plans to Mars or other astronomical bodies, there is a need for a new and innovative way to return materials, potentially at a lower cost. The Rapid Impactor Sample Return (RISR) mission is one such proposal. The general mission scenario involves a single pass of Mars, a Martian moon or an asteroid at high speeds (7 km/s), with the sample return vehicle skimming just 1 or 2 m above a high point (such as a top ridge on Olympus Mons on Mars) and releasing an impactor. The impactor strikes the ground, throwing up debris. The debris with roughly the same forward velocity will be captured by the sample return vehicle and returned to Earth. There is no delay or orbit in the vicinity of Mars or the asteroid: RISR is a one-pass mission. This paper discusses some of the details of the proposal. Calculations are presented that address the question of how much material can be recovered with this technique. There are concerns about the effect of Mars tenuous atmosphere. However, it will be noted that such issues do not occur for RISR style missions to Phobos, Deimos, or asteroids and Near Earth Objects (NEOs). Recent test results in the missile defense community (IFTs 6–8 in 2001, 2002) have scored direct hits at better than 1 m accuracy with closing velocities of 7.6 km/s, giving the belief that accuracy and sensing issues are developed to a point that the RISR mission scenario is feasible.  相似文献   

15.
Single crater-aided inertial navigation for autonomous asteroid landing   总被引:1,自引:0,他引:1  
In this paper, a novel crater-aided inertial navigation approach for autonomous asteroid landing mission is developed. It overcomes the major deficiencies of existing approaches in the literature, which mainly focuses on the case where craters are abundant in the camera field of view. As a result, traditional crater based methods require at least three craters to achieve crater matching, which limits their application in final landing phase where craters are scarce in the camera’s field of view. In contrast, the proposed algorithm enables single crater based crater matching based on a novel 2D-3D crater re-projection model. The re-projection model adopts inertial measurements as a reference, and re-projects the 3D crater model onto descent images to achieve the matching to its counterpart. An asteroid landing simulation toolbox is developed to validate the performance of the proposed approach. Through comparison with the state-of-the-art local image feature and crater based navigation algorithms, the proposed approach is validated to achieve a competitive performance in terms of feature matching and pose estimation accuracy with a much lighter computational cost.  相似文献   

16.
Reflectance spectra of S-type asteroids are different from those of ordinary chondrites. This spectral mismatch is explained by space weathering processes, where high-velocity dust particle impacts change the optical properties of the uppermost regolith surface of asteroids. S-type asteroids exhibit more overall depletion and reddening of spectra, and more weakening of absorption bands relative to ordinary chondrites. Nanophase metallic iron particles, which are formed through vapor deposition from dust impact heating, are considered as the most essential cause of space weathering. In this study, we describe the spectral changes of olivine and pyroxene using nanosecond pulse laser irradiation and the presence of nanophase metallic iron particles in laser-irradiated materials by transmission electron microscopy (TEM) and electron spin resonance (ESR).

The irradiated spectra of the samples show a reduction of the overall spectra (250–2600 nm) and a reddening with weakened absorption bands. Nanophase metallic iron particles were found not only in laser-irradiated olivine samples, but also in laser-irradiated pyroxene samples by TEM. Strong ESR signals, which derive from nanophase iron particles, are observed in the irradiated olivine samples. Moreover, ESR intensities increase with the space weathering degree simulated as laser irradiation time. One possible application of space weathering is the estimation of the relative age of asteroids using the relation between optical effects and quantities of produced nanophase iron particles.  相似文献   


17.
The lifetime of almost all the asteroids against catastrophic impact events is less than the age of the solar system, implying that the asteroids can be considered as outcomes of catastrophic collisions. Therefore to understand their physical properties (structure, shape, rotation, regolith development) and their family memberships (since families are generated by the escape of breakup fragments), a systematic knowledge of the outcomes of catastrophic impacts under a variety of conditions seems needed. In particular, interesting fields to be explored by laboratory experiments are: the dependence of the critical energy densities associated with various degrees of fragmentation on the target's size and composition; the velocity distribution of the fragments and the inelasticity of the process in different cases; the shape of the fragments and its possible correlation with other quantities; the way a dust- or regolith-covered target affects the collisional outcomes; the angular momentum partitioning and the rotation of the fragments. On this latter problem very few experimental results are presently available; on the other hand, the rotation of small asteroids presents several intriguing “anomalies”.

A significant progress of our understanding of asteroid collisional evolution and related phenomena can be provided by new laboratory experiments of collisional breakup. The targets should have spherical and/or irregular shape (up to axial ratios of the order of 2), and should be made of (possibly different) geological materials. The interesting projectile velocities are of the order of the relative velocities commonly found among asteroids, i.e., in the range 1 to 10 Kms−1. In order to get catastrophic collisions, the ratio of the projectile kinetic energy to the target mass (≡E/M) has to be chosen within a “critical” range (for basalt targets, from 106 to 108 erg/g). In some particular cases, this kind of experiments has been already performed in past (Gault and Wedekind [10]; Fujiwara et al. [7]; Fujiwara and Tsukamoto [9]); however the generalization of the results to a wide range of experimental conditions is lacking, and many problems of outstanding importance to model asteroid evolution are still completely open.  相似文献   


18.
亳县球粒陨石化学组成的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文报道了安徽毫县球粒陨石的化学全分析结果及主要的化学参数,并对陨石中金属铁和陨硫铁的不同测定方法进行了研究及结果比较。根据球粒陨石的分类原则,毫县陨石属LL化学群。   相似文献   

19.
用仪器中子活化法分析了毫县(LL3-4)陨石中14个球粒的Al,Mg,Mn,Na,V,La,Sm,Au,Sc,Cr,Fe,Co,Ni,Eu,Ir等元素的含量。该陨石的球粒平均成分对Mg和Cl球粒陨石标准化值与其它不平衡普通球粒陨石一致。通过模糊聚类分析和因子分析讨论了元素间的相关关系。这些球粒的原始物质组分至少包括亲铁元素,难熔和中等难熔亲石元素以及中等挥发性元素等,这也与其它不平衡普通球粒陨石大体一致。因此,普通球粒陨石各化学群的差别主要是由基质造成的。   相似文献   

20.
Sample return from small solar system objects is playing an increasingly important part in solar system exploration. Critical to such missions is a robust, simple, and economic sample collector. We have developed a collector such as this for near-Earth asteroid sample return missions that we have termed the Touch-and-Go Impregnable Pad (TGIP). The collector utilizes a silicone substrate that is pushed into the dust and gravel surface layer of the asteroid. As part of a systematic evaluation of the TGIP, we have investigated the resilience of this substrate to ionizing radiations. Several miniature versions of the collector, containing typically ∼3 g of the collection substrate, were exposed to 0.564 MeV beta particles from a 90Sr source and a 6 MeV electron beam in a linear accelerator to simulate the wide range of energies of solar and galactic ionizing radiation. Various radiation levels up to eight times greater than expected on a six-year asteroid mission (in the case of beta radiation) and 50 times greater than expected (in the case of the 6 MeV electron radiation) were administered to the substrate. After irradiation, the efficiency of the substrate in collecting samples of mock regolith was compared with that of collectors that had not been irradiated. No difference beyond experimental uncertainty was observed and we suggest that the operational TGIP will not be affected adversely by radiation doses expected during a typical six-year inner solar system mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号