首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
大比例主梁节段模型涡激振动风洞试验分析   总被引:4,自引:0,他引:4  
节段模型风洞试验是预估大跨度桥梁主梁涡激振动响应的有效途径之一。大比例主梁节段模型(通常为1:15~1:20)几何尺度更大,试验雷诺数更接近实桥值,同时在模型加工制作方面也可更精确地模拟主梁细节。通过一扁平钢箱梁1:20大比例节段模型试验,优化了检查车轨道位置,分析了涡激振动典型现象如振幅、涡振区与阻尼、Scruton数关系,迎角与斯托劳哈数5£关系,双竖向涡振区等,为节段模型涡振试验结果向实桥拓展提供理论与试验基础。  相似文献   

2.
周期性旋涡脱落会使大跨度桥梁产生涡激振动,与旋涡脱落密切相关的涡激力沿跨向并不完全相关。基于Scanlan涡激力经验线性模型,研究了涡激力沿跨向的相关性。通过Fourier变换得到二维力谱到三维广义力谱的转换关系,定义了二维与原型桥梁涡振响应之间的折减系数,给出了将节段模型涡振试验结果应用到原型桥梁的具体理论方法。最后,通过不同缩尺比的节段模型风洞试验及全桥气弹模型风洞试验验证了本文理论的有效性。  相似文献   

3.
一维钝体竖向拍振非线性涡激力识别   总被引:1,自引:0,他引:1  
基于Scanlan经验非线性模型,推导一维钝体竖向涡激振动拍振响应.借鉴Wilkinson涡激力相关性函数,探讨节段模型拍振状态下气动参数、涡激力识别方法,分析相关性对涡激力识别的作用.以一大跨度桥梁主梁断面为例,识别气动参数及其非线性涡激力,结果表明在节段模型试验分析中考虑相关性作用后,可更准确地识别其非线性涡激力.  相似文献   

4.
大跨度悬索桥钢箱主梁涡振性能优化风洞试验研究   总被引:5,自引:0,他引:5  
以某大跨度钢箱梁悬索桥为工程背景,该桥桥面高速公路与人行道并存,桥面栏杆较多,且设置了防抛网,主梁竖向及扭转涡振明显.通过节段模型风洞试验研究了检修车轨道位置、桥面栏杆、分流板以及攻角和阻尼等对主梁涡激振动性能的影响,提出了优化主梁涡振的气动措施.试验结果表明,优化检修车轨道位置和在主梁风嘴处设置分流板能有效地抑制主梁涡振.  相似文献   

5.
大型钢桥塔在中国应用较少,其风振特点与常规混凝土桥塔有较大差异。以大跨度斜拉桥"人"字弧线形钢桥塔为工程背景,采用考虑三维绕流特性的气弹模型,针对塔柱可能的断面形式进行了多工况的对比试验,并对风洞试验结果进行分析讨论,进而确定最优断面形式。根据确定的断面形式,对该桥桥塔进行了大缩尺比的气弹模型风洞试验,较全面地考查了该桥桥塔的涡激振动及驰振性能,并对比了阻尼比对桥塔涡激振动振幅及驰振临界风速的影响。试验结果表明:当塔柱断面切角为0.8m×0.7m时桥塔涡振响应最小,相应的扭转驰振临界风速较高。  相似文献   

6.
2020年5月5日虎门大桥因施工临时架设水马产生了风致涡激共振(简称为涡振)现象,引发了社会舆论强烈关注。本文从涡振机理出发,讨论了桥梁主梁产生的涡振敏感性,依次阐述了涡振对桥梁主梁附属构件中的导流板、抑流板、检修轨道、栏杆、拉索等参数的响应程度,由此证实小尺度的水马也能造成虎门大桥大幅振动的潜在可能性。同时,介绍和探讨了结构阻尼比、来流攻角、湍流度与来流风速对涡振的影响,给出了相关桥梁阻尼比随时间变化的实际观测数据。分析得出多座桥梁结构发生涡振的原因与涡振自身的强敏感性密切相关。深入探讨了利用桥梁涡振控制与发电等装置,可以在对涡振进行安全控制的同时,实现能量的合理开发利用。  相似文献   

7.
西陵长江大桥全桥气动弹性模型风洞试验研究   总被引:3,自引:0,他引:3  
介绍了西陵长江大桥成桥状态和施工状态全桥气动弹性模型在均匀平滑流和湍流两种流场中的风洞试验,评估了西陵长江大桥颤振、抖振和涡激振动等风振特性,给出了颤振风速和抖振振幅。可供研究其它大跨度桥梁的风振特性参考。  相似文献   

8.
多孔扰流板对半封闭窄箱梁涡振的减振效果   总被引:2,自引:0,他引:2  
大跨度桥梁涡激共振是影响桥梁运营阶段行车舒适性和桥梁构件疲劳寿命的重要因素。以某半封闭钢箱梁斜拉桥为工程背景,通过节段模型风洞试验研究了在宽高比约为8.1的半封闭窄箱梁底板外缘安装多孔扰流板气动措施的涡振减振效果。结果表明:对于这类半封闭窄箱梁,在上游侧安装多孔板的减振效果略好于上下游两侧同时安装多孔板的减振效果,只在下游侧安装多孔板的减振效果要明显不如前二者;此外,多孔板悬挑宽度对其涡振减振效果也有较大影响,一般来说多孔板悬挑宽度越大,减振效果越好,尤其是对于只在下游侧安装多孔板的情况,多孔板悬出宽度对减振效果的影响更明显。  相似文献   

9.
空间结构涡激振动分析   总被引:1,自引:0,他引:1  
大跨度拱桥、空间细长杆件等空间结构在较低的风速下可能产生周期性的横风向涡激振动.本文主要讨论了空间结构涡激振动非线性稳定态,特别是共振区域的稳态响应的求解.应用Scanlan提出的经验非线性模型表达涡激力,考虑风速沿结构高度变化,引入有限元方法和条带假设形成涡激振动运动方程.利用Wilson-θ法和Newton-Raphson迭代法对运动方程计算了涡激振动振幅,同时利用能量法对运动方程进行了求解.通过对简支梁和重庆菜园坝长江大桥的分析表明,用能量法求解和按照Wilson-θ法求解的结果是一致的.  相似文献   

10.
独柱式桥塔易发生风致振动,当塔柱倾斜且采用变截面形式时,风的作用下常表现出复杂的三维流动效应。为考察独柱式变截面斜塔静动力气动性能,通过桥塔刚性模型测力风洞试验测试了不同风向角下桥塔气动力系数,对比分析了桥塔三维绕流的影响。通过桥塔气弹模型测振风洞试验,测试了涡激振动起振风速及振幅,对比了来流风向及阻尼比对桥塔涡激振动的影响。研究结果表明,桥塔整体气动力系数及断面等效气动力系数沿塔高的变化规律受来流风向角的影响显著,顺桥向风作用下倾斜桥塔易发生横桥向涡激振动,提高结构阻尼比,可有效抑制涡振。  相似文献   

11.
利用粒子图像测速技术(PIV)观测了箱梁颤振过程中模型周围流场的旋涡特征,以模型扭转振动位移作为参考信号,采用相位平均的方法研究了旋涡规律性演化对模型周期性振动的驱动作用。风速较低时,箱梁振幅很小,其尾部风嘴附近上侧的旋涡尺度也很小,不易观测到,而下侧的旋涡尺度较大,其形状接近于圆形。当风速接近颤振临界风速时,箱梁振幅明显增大,并且模型尾部风嘴上侧的旋涡尺度也显著增大,达到与下侧旋涡尺度相匹配的程度,模型尾部风嘴上下侧旋涡的交替作用主导了结构振动直到模型振动发散。基于流固松耦合的计算策略,采用计算流体动力学(CFD)的数值方法模拟了箱梁颤振临界状态下的绕流特性,结合正交特征分解(POD)的方法研究了模型颤振时刻表面压力的空间分布特征,通过分析发现在颤振过程中箱梁表面波动压力的主控成分向迎风侧风嘴漂移。  相似文献   

12.
采用离散涡方法及流场可视化技术识别桥梁Π形板梁断面的旋涡脱落机制.流场可视化显示,来流绕过振动的Π形板梁断面时,在主梁断面前缘下部分离泡形成并发展为主涡结构,主涡结构沿主梁断面下表面漂移并经断面后缘下端进入尾流,主涡结构的形成时间及沿主梁断面的漂移过程对气动力起直接的主导作用;计算结果也表明恰当地布置稳定板能将颤振形态从单自由度扭转颤振转化为两自由度弯扭耦合颤振,颤振临界风速可明显提高.  相似文献   

13.
斜拉索风雨振动及制振措施的风洞试验研究   总被引:2,自引:0,他引:2  
采用全尺寸节段模型,进行了3种不同直径光面索的风雨振动风洞试验,并在各自雨振发生的临界风速、姿态及雨量条件下,和表面附加螺旋肋条及压花后的模型,进行了对比试验,且考察了不同阻尼条件下模型的振动特性,由此探索出对抑制雨振效果较佳的斜拉索表面形式及合适的阻尼比。  相似文献   

14.
中承式拱桥属于柔性空间结构,主拱上承受的脉动风荷载相互干扰。以重庆菜园坝长江大桥为研究对象,进行了湍流下的主拱单拱及双拱节段模型风洞试验。对模型表面脉动压力的功率谱、相关系数、水平和竖向相干函数进行了细致分析,讨论了双拱间距宽度比对脉动压力频域特性的影响。当间距宽度比大于5时,后拱风荷载受到前拱的干扰作用。当两拱间距宽度比小于5时,前后拱风荷载特性类似于组合截面。随间距宽度比变小,主拱涡脱落折算频率和压力功率谱逐渐增大,前后拱迎风面和背风面的相关系数及相干系数均逐步降低。  相似文献   

15.
斜拉桥拉索风雨激振理论模型和机理研究   总被引:8,自引:0,他引:8  
斜拉桥拉索风雨激振的机理研究是国际风工程和桥梁工程领域的著名难题。本文设计、制作了可方便调节拉索模型倾角和风向角的试验装置以及用于测压试验的带人工雨线的拉索模型,并在风洞中进行了细致的试验。试验得到了具有典型倾角的拉索在不同风向角下,拉索和水线模型上的平均风压和脉动风压系数,以及气动力系数。在此基础上,建立了拉索风雨激振新的理论模型,计算分析了节段三维拉索的风雨激振响应及其机制。  相似文献   

16.
垂直于流向的截面中2D-PIV测量误差分析   总被引:2,自引:0,他引:2  
常规二维粒子图像测速技术(2D-PIV)作为重要的流场测试手段,被越来越多地应用到各种类型的流场测量中。然而采用该技术对垂直于流向的截面进行测量时会产生明显误差,该误差是由2D-PIV原理中几何透视成像关系引起。本文分析了测量截面内有法向速度分量时透视误差产生原因及影响因素,建立了2D-PIV测量平面内的误差模型。通过实验测试验证了误差模型的正确性,确定了影响测量误差的关键参数为测量平面的法向速度和视场的离轴角。计算结果显示,最大透视误差可达法向速度的9.3%。根据误差模型进行分析,透视误差对流向涡类流场测量的影响主要为3个方面:改变流场速度量值大小、改变旋涡形状、改变旋涡的位置。最后,提出了一些减小误差的措施,为2D-PIV应用于垂直流向截面的测量提供了改进方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号