首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemolithoautotrophy based on reduced inorganic minerals is considered a primitive energy transduction system. Evidence that a high number of meteorites crashed into the planet during the early period of Earth history led us to test the ability of iron-oxidizing bacteria to grow using iron meteorites as their source of energy. Here we report the growth of two acidophilic iron-oxidizing bacteria, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans, on a piece of the Toluca meteorite as the only source of energy. The alteration of the surface of the exposed piece of meteorite, the solubilization of its oxidized metal constituents, mainly ferric iron, and the formation of goethite precipitates all clearly indicate that iron-meteorite-based chemolithotrophic metabolism is viable.  相似文献   

2.
The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.  相似文献   

3.
Materials blasted into space from the surface of early Earth may preserve a unique record of our planet's early surface environment. Armstrong et al. (2002) pointed out that such materials, in the form of terrestrial meteorites, may exist on the Moon and be of considerable astrobiological interest if biomarkers from early Earth are preserved within them. Here, we report results obtained via the AUTODYN hydrocode to calculate the peak pressures within terrestrial meteorites on the lunar surface to assess their likelihood of surviving the impact. Our results confirm the order-of-magnitude estimates of Armstrong et al. (2002) that substantial survivability is to be expected, especially in the case of relatively low velocity (ca. 2.5 km/s) or oblique (相似文献   

4.
The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged.  相似文献   

5.
Planetary microcosms were constructed using extracts from meteorites that simulate solutions in the pores of carbonaceous chondrites. The microcosms were found to support the growth of complex algal and microbial populations. Such astroecology experiments demonstrate how a diverse ecosystem could exist in fluids within asteroids, and in meteorites that land on aqueous planets. The microcosm solutions were obtained by extracting nutrient electrolytes under natural conditions from powders of the Allende (CV3) and Murchison (CM2) meteorites at low (0.02 g/ml) and high (10.0 g/ml) solid/solution ratios. The latter solutions contain > 3 mol/L electrolytes and about 10 g/L organics, that simulate natural fluids in asteroids during aqueous alteration and in the pores of meteorites, which can help prebiotic synthesis and the survival of early microorganisms. These solutions and wet solids were in fact found to support complex self-sustaining microbial communities with populations of 4 x 10(5) algae and 6 x 10(6) bacteria and fungi for long periods (> 8 months). The results show that planetary microcosms based on meteorites can: assay the fertilities of planetary materials; identify space bioresources; target astrobiology exploration; and model past and future space-based ecosystems. The results show that bioresources in the carbonaceous asteroids can sustain a biomass of 10(18) kg, comprising 10(32) microorganisms and a human population of 10(14). The results also suggest that protoplanetary nebulae can support and disperse microorganisms and can be therefore effective environments for natural and directed panspermia.  相似文献   

6.
With their similar size, chemical composition, and distance from the Sun, Venus and Earth may have shared a similar early history. Though surface conditions on Venus are now too extreme for life as we know it, it likely had abundant water and favorable conditions for life when the Sun was fainter early in the Solar System. Given the persistence of life under stabilizing selection in static environments, it is possible that life could exist in restricted environmental niches, where it may have retreated after conditions on the surface became untenable. High-pressure subsurface habitats with water in the supercritical liquid state could be a potential refugium, as could be the zone of dense cloud cover where thermoacidophilic life might have retreated. Technology based on the Stardust Mission to collect comet particles could readily be adapted for a pass through the appropriate cloud layer for sample collection and return to Earth.  相似文献   

7.
Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.  相似文献   

8.
The delivery of extraterrestrial organic materials to primitive Earth from meteorites or micrometeorites has long been postulated to be one of the origins of the prebiotic molecules involved in the subsequent apparition of life. Here, we report on experiments in which vacuum UV photo-irradiation of interstellar/circumstellar ice analogues containing H(2)O, CH(3)OH, and NH(3) led to the production of several molecules of prebiotic interest. These were recovered at room temperature in the semi-refractory, water-soluble residues after evaporation of the ice. In particular, we detected small quantities of hydantoin (2,4-imidazolidinedione), a species suspected to play an important role in the formation of poly- and oligopeptides. In addition, hydantoin is known to form under extraterrestrial, abiotic conditions, since it has been detected, along with various other derivatives, in the soluble part of organic matter of primitive carbonaceous meteorites. This result, together with other related experiments reported recently, points to the potential importance of the photochemistry of interstellar "dirty" ices in the formation of organics in Solar System materials. Such molecules could then have been delivered to the surface of primitive Earth, as well as other telluric (exo-) planets, to help trigger first prebiotic reactions with the capacity to lead to some form of primitive biomolecular activity.  相似文献   

9.
Bailey J 《Astrobiology》2007,7(2):320-332
Current proposals for the characterization of extrasolar terrestrial planets rest primarily on the use of spectroscopic techniques. While spectroscopy is effective in detecting the gaseous components of a planet's atmosphere, it provides no way of detecting the presence of liquid water, the defining characteristic of a habitable planet. In this paper, I investigate the potential of an alternative technique for characterizing the atmosphere of a planet using polarization. By looking for a polarization peak at the "primary rainbow" scattering angle, it is possible to detect the presence of liquid droplets in a planet's atmosphere and constrain the nature of the liquid through its refractive index. Single scattering calculations are presented to show that a well-defined rainbow scattering peak is present over the full range of likely cloud droplet sizes and clearly distinguishes the presence of liquid droplets from solid particles such as ice or dust. Rainbow scattering has been used in the past to determine the nature of the cloud droplets in the Venus atmosphere and by the POLarization and Directionality of Earth Reflectances (POLDER) instrument to distinguish between liquid and ice clouds in the Earth atmosphere. While the presence of liquid water clouds does not guarantee the presence of water at the surface, this technique could complement spectroscopic techniques for characterizing the atmospheres of potential habitable planets. The disk-integrated rainbow peak for Earth is estimated to be at a degree of polarization of 12.7% or 15.5% for two different cloud cover scenarios. The observation of this rainbow peak is shown to be feasible with the proposed Terrestrial Planet Finder Coronograph mission in similar total integration times to those required for spectroscopic characterization.  相似文献   

10.
Muller AW 《Astrobiology》2003,3(3):555-564
During thermal cycling, organisms could live on thermosynthesis, a theoretical mechanism applicable to the origin of life and the early evolution of biological energy conversion. All extraterrestrial ice may be a repository for frozen dead or dormant organisms from earlier stages of evolution. In the presence of a thermal gradient within the ice, organisms might still be harvesting energy from thermosynthesis. Possible habitats for thermosynthesizers can be found throughout the Solar System, particularly in the cold traps on Mercury and the Moon, convecting waters on Mars, the oceans on moons in the outer Solar System, and smaller bodies rotating in the sunlight such as cosmic dust, meteorites, asteroids, and comets. A general strategy for detecting thermosynthetic organisms on Earth is offered, and highlights of current and upcoming robotic exploratory missions relevant to the detection of thermosynthesis are reviewed.  相似文献   

11.
The presence of nonprotein α-dialkyl-amino acids such as α-aminoisobutyric acid (α-AIB) and isovaline (Iva), which are considered to be relatively rare in the terrestrial biosphere, has long been used as an indication of the indigeneity of meteoritic amino acids. However, recent work showing the presence of α-AIB and Iva in peptides produced by a widespread group of filamentous fungi indicates the possibility of a terrestrial biotic source for the α-AIB observed in some meteorites. We measured the amino acid distribution and stable carbon and nitrogen isotopic composition of four α-AIB-containing fungal peptides and compared this data to similar meteoritic measurements. We show that the relatively simple distribution of the C(4) and C(5) amino acids in fungal peptides is distinct from the complex distribution observed in many carbonaceous chondrites. We also identify potentially diagnostic relationships between the stable isotopic compositions of pairs of amino acids from the fungal peptides that may aid in ruling out fungal contamination as a source of meteoritic amino acids.  相似文献   

12.
Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.  相似文献   

13.
It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids.  相似文献   

14.
Melosh HJ 《Astrobiology》2003,3(1):207-215
It is now generally accepted that meteorite-size fragments of rock can be ejected from planetary bodies. Numerical studies of the orbital evolution of such planetary ejecta are consistent with the observed cosmic ray exposure times and infall rates of these meteorites. All of these numerical studies agree that a substantial fraction (up to one-third) of the ejecta from any planet in our Solar System is eventually thrown out of the Solar System during encounters with the giant planets Jupiter and Saturn. In this paper I examine the probability that such interstellar meteorites might be captured into a distant solar system and fall onto a terrestrial planet in that system within a given interval of time. The overall conclusion is that it is very unlikely that even a single meteorite originating on a terrestrial planet in our solar system has fallen onto a terrestrial planet in another stellar system, over the entire period of our Solar System's existence. Although viable microorganisms may be readily exchanged between planets in our solar system through the interplanetary transfer of meteoritic material, it seems that the origin of life on Earth must be sought within the confines of the Solar System, not abroad in the galaxy.  相似文献   

15.
Life is generally believed to emerge on Earth, to be at least functionally similar to life as we know it today, and to be much simpler than modern life. Although minimal life is notoriously difficult to define, a molecular system can be considered alive if it turns resources into building blocks, replicates, and evolves. Primitive life may have consisted of a compartmentalized genetic system coupled with an energy-harvesting mechanism. How prebiotic building blocks self-assemble and transform themselves into a minimal living system can be broken into two questions: (1) How can prebiotic building blocks form containers, metabolic networks, and informational polymers? (2) How can these three components cooperatively organize to form a protocell that satisfies the minimal requirements for a living system? The functional integration of these components is a difficult puzzle that requires cooperation among all the aspects of protocell assembly: starting material, reaction mechanisms, thermodynamics, and the integration of the inheritance, metabolism, and container functionalities. Protocells may have been self-assembled from components different from those used in modern biochemistry. We propose that assemblies based on aromatic hydrocarbons may have been the most abundant flexible and stable organic materials on the primitive Earth and discuss their possible integration into a minimal life form. In this paper we attempt to combine current knowledge of the composition of prebiotic organic material of extraterrestrial and terrestrial origin, and put these in the context of possible prebiotic scenarios. We also describe laboratory experiments that might help clarify the transition from nonliving to living matter using aromatic material. This paper presents an interdisciplinary approach to interface state of the art knowledge in astrochemistry, prebiotic chemistry, and artificial life research.  相似文献   

16.
Despite the extensive search for glycine (NH?CH?COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH?OH. Another possible reaction involves NH?CH? and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH?CH or NH?CH?OH are the most favorable from the thermochemical point of view.  相似文献   

17.
Iron-magnesium silicate bioweathering on Earth (and Mars?)   总被引:1,自引:0,他引:1  
We examined the common, iron-magnesium silicate minerals olivine and pyroxene in basalt and in mantle rocks to determine if they exhibit textures similar to bioweathering textures found in glass. Our results show that weathering in olivine may occur as long, narrow tunnels (1-3 microm in diameter and up to 100 microm long) and as larger irregular galleries, both of which have distinctive characteristics consistent with biological activity. These weathering textures are associated with clay mineral by-products and nucleic acids. We also examined olivine and pyroxene in martian meteorites, some of which experienced preterrestrial aqueous alteration. Some olivines and pyroxenes in the martian meteorite Nakhla were found to contain tunnels that are similar in size and shape to tunnels in terrestrial iron-magnesium silicates that contain nucleic acids. Though the tunnels found in Nakhla are similar to the biosignatures found in terrestrial minerals, their presence cannot be used to prove that the martian alteration features had a biogenic origin. The abundance and wide distribution of olivine and pyroxene on Earth and in the Solar System make bioweathering features in these minerals potentially important new biosignatures that may play a significant role in evaluating whether life ever existed on Mars.  相似文献   

18.
Möhlmann D 《Astrobiology》2005,5(6):770-777
Mars Odyssey has given strong evidence for the existence of water in the upper martian surface at equatorial latitudes. The water content, which corresponds to the hydrogen in the soil, can regionally reach values up to about 15%. This water is mainly in the form of structurally and partially irreversibly bound "crystal" water, and of reversibly bound and partially unfrozen adsorption water. This adsorption water, which has "liquid-like" properties as a two dimensional fluid or film, can trigger-in the presence of ultraviolet light and in concentrations similar to what has been measured on Mars-photocatalytic processes that are important for martian surface chemistry. The consequences of the diurnally variable presence of adsorption water on the chemistry and hypothetical biological processes at and in the upper martian surface at equatorial and mid-latitudes are discussed in terms of water-related environmental aspects for chemical and hypothetical life processes on Mars.  相似文献   

19.
Several observations indicate that the cloud deck of the venusian atmosphere may provide a plausible refuge for microbial life. Having originated in a hot proto-ocean or been brought in by meteorites from Earth (or Mars), early life on Venus could have adapted to a dry, acidic atmospheric niche as the warming planet lost its oceans. The greatest obstacle for the survival of any organism in this niche may be high doses of ultraviolet (UV) radiation. Here we make the argument that such an organism may utilize sulfur allotropes present in the venusian atmosphere, particularly S(8), as a UV sunscreen, as an energy-converting pigment, or as a means for converting UV light to lower frequencies that can be used for photosynthesis. Thus, life could exist today in the clouds of Venus.  相似文献   

20.
The jets of icy particles and water vapor issuing from the south pole of Enceladus are evidence for activity driven by some geophysical energy source. The vapor has also been shown to contain simple organic compounds, and the south polar terrain is bathed in excess heat coming from below. The source of the ice and vapor, and the mechanisms that accelerate the material into space, remain obscure. However, it is possible that a liquid water environment exists beneath the south polar cap, which may be conducive to life. Several theories for the origin of life on Earth would apply to Enceladus. These are (1) origin in an organic-rich mixture, (2) origin in the redox gradient of a submarine vent, and (3) panspermia. There are three microbial ecosystems on Earth that do not rely on sunlight, oxygen, or organics produced at the surface and, thus, provide analogues for possible ecologies on Enceladus. Two of these ecosystems are found deep in volcanic rock, and the primary productivity is based on the consumption by methanogens of hydrogen produced by rock reactions with water. The third ecosystem is found deep below the surface in South Africa and is based on sulfur-reducing bacteria consuming hydrogen and sulfate, both of which are ultimately produced by radioactive decay. Methane has been detected in the plume of Enceladus and may be biological in origin. An indicator of biological origin may be the ratio of non-methane hydrocarbons to methane, which is very low (0.001) for biological sources but is higher (0.1-0.01) for nonbiological sources. Thus, Cassini's instruments may detect plausible evidence for life by analysis of hydrocarbons in the plume during close encounters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号