首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 875 毫秒
1.
为了研究30cm离子推力器三栅极组件设计参数对预估寿命的影响,在完成失效模式分析的基础上,通过PIC-MCC方法对离子推力器三栅极组件的离子溅射速率进行了计算,建立起栅孔二维寿命预估模型,并针对栅极设计参数对预估寿命的影响进行研究。结果显示:导致三栅极组件的主要失效模式为5kW高功率模式下的离子直接轰击所造成的栅极早期结构失效,且减速栅的过快离子溅射腐蚀成为影响三栅极组件寿命的关键,而不同工作模式不会产生新的失效方式,仅影响栅极的离子溅射速率以及寿命;在现有三栅极设计参数条件下,当推力器工作时,栅极引出的离子束流处于明显欠聚焦状态,且加速栅寿命预估值约为9062h,而减速栅约为2642h;通过PIC-MCC方法得到的栅极三个关键设计参数对寿命的影响模拟结果显示,降低加速栅电压对提升减速栅寿命的作用较小;缩小加速栅与减速栅冷态间距后,离子溅射速率会随着冷态间距的缩小逐渐降低,冷态间距由1mm缩小至0.6mm后,减速栅在5kW工况下的工作寿命可提升至10726h,且经试验验证该间距可满足推力器力学环境试验要求;缩小屏栅孔径对改变离子束流引出形状具有显著作用,单孔束流发散角度随着屏栅孔径的缩小出现了明显降低,且束流离子几乎不会再直接轰击至减速栅上游区域,当屏栅孔径由1.9mm缩小至1.6mm后,减速栅工作寿命可提升至9259h;分析结果对后续开展栅极组件的寿命优化设计提供了参考。  相似文献   

2.
贾艳辉  王聪  李娟  耿海  郭宁  杨浩  王亮 《推进技术》2020,41(1):140-148
电子反流失效模式是离子推力器关键失效模式之一,决定推力器工作寿命。为明确各参数对电子反流失效模式的影响程度,确定加速应力,为地面加速寿命实验验证方案和长寿命优化设计提供数据支持,采用Hybrid-PIC-MCC (Particle in Cell-Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示,真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。  相似文献   

3.
针对电子反流失效模式主导的三栅极离子推力器加速寿命试验加速应力选择及长寿命优化,需要开展影响参数的敏感性对比研究,采用Hybrid-PIC-MCC(Particle in Cell- Monte Carlo Collision)方法,构建了三栅极系统数值仿真模型。采用模型研究了地面真空舱本底压力、屏栅电压、加速栅电压、屏栅与加速栅间距、屏栅上游等离子体密度和放电室工质利用率等参数的影响敏感度对比。研究结果显示真空舱本底压力可以作为加速寿命试验的首选加速应力,在推力器结构和工作本征参数中工质利用率为最敏感应力,其次是屏栅电压、屏栅上游等离子体密度、加速栅电压、屏栅和加速栅间距。研究结果为三栅极离子推力器地面加速寿命试验验证方案设计和长寿命优化设计提供了数据支持。  相似文献   

4.
离子推力器加速栅寿命概率性分析   总被引:6,自引:5,他引:1  
交换电荷离子对加速栅极的溅射腐蚀是离子推力器的关键失效模式之一,基于交换电荷离子对加速栅溅射腐蚀的物理机理,对离子推力器加速栅工作寿命进行了概率性建模。利用该模型对20cm Xe离子推力器加速栅寿命和其达到预期寿命的可靠度进行了评估。结果显示加速栅的寿命近似服从高斯分布,当推力器工作环境压力近似6.7×10-3Pa时,加速栅工作寿命达到3kh的可靠度为0.9352。  相似文献   

5.
基于加速栅溅射腐蚀失效的离子推力器寿命预测   总被引:1,自引:1,他引:0  
离子推力器加速栅溅射腐蚀失效是制约离子推力器寿命的关键失效模式之一.针对离子推力器长寿命、多功率条件下运行的特点,基于坑和凹槽的溅射腐蚀数据,建立模型对其进行寿命预测.通过研究离子推力器加速栅中心凹槽腐蚀深度在不同功率段下随工作时间的变化规律发现:运行功率顺序对加速栅凹槽腐蚀率影响较小,进而采用累积损伤理论建立离子推力器多功率段下运行的寿命预测模型.最后, 对美国的NASA's Evolutionary Xenon Thruster(NEXT)进行了寿命预测,预测结果寿命为46041h,与试验结果符合较好.   相似文献   

6.
环型会切场离子推力器和柱型会切场离子推力器是当前广泛应用和研究的两种会切场离子推力器。基于30cm环型会切场离子推力器LIPS-300H和30cm柱型会切场离子推力器LIPS-300Z,对比研究了两类会切场离子推力器各自优劣及其机理。首先分析了两种会切场原理,总结给出了两种会切场差异,然后实验对比研究了两种会切场离子推力器束流均匀性、放电效率和寿命。实验结果显示:LIPS-300H相比LIPS-300Z在3kW和5kW工况下束流密度峰值分别降低25%和19%,放电电压分别降低7.8V和6.2V,放电损耗分别增加20W/A和32W/A,屏栅预测寿命分别增加6.7倍和3.2倍。试验结果表明:虽然LIPS-300Z比LIPS-300H具有放电损耗低的优点,但其较差的束流均匀性,较高的阳极电压和双荷离子比,使其在寿命和可靠性方面劣于LIPS-300H。  相似文献   

7.
离子推力器栅极系统电子反流阈值的数值分析   总被引:9,自引:9,他引:0  
阻止束流等离子体中电子反流到加速栅上游区域是离子推力器加速栅负电压的主要作用之一,能够阻止电子反流的加速栅电压最小值称为电子反流阈值。加速栅电压的选择直接影响到离子推力器的工作性能和运行寿命,电子反流阈值电压是确定加速栅电压的重要参考参数。基于PIC方法计算了20cm氙离子推力器加速栅电子反流阈值,并分析了加速栅孔径、栅间距、单孔引出束流电流大小对加速栅电子反流阈值电压的影响,计算结果与试验测量值符合较好。该数值模型为加速栅参数的选择和降低电子反流失效风险方法提供了参考,为下一步电子反流现象对加速栅寿命的预测分析奠定了基础。  相似文献   

8.
为了明确国内200 mm口径离子推力器放电室出口(即栅极上游附近)离子密度径向分布,采用实验与数值仿真相结合的方法对LIPS-200推力器放电室出口离子密度进行研究。应用法拉第筒分别测试推力器栅极下游50mm和100mm位置处束流特性,结合经验模型计算出栅极出口(z=0mm)束流离子径向分布。在此基础上,通过栅极数值模拟仿真,分析出栅极系统透过率随栅孔电流变化关系,进而反推计算出放电室出口离子密度径向分布。结果显示:放电室出口离子密度平均值约为9.0×10~(17)m~(-3),最大值约为1.54×10~(18)m~(-3),最小值约为4.6×10~(17)m~(-3);离子密度径向分布具有较好的中心轴对称性,离子密度从中心处沿着径向先缓慢减小,在径向位置约为50mm时出现快速下降;对比放电室出口与栅极出口离子密度径向分布发现,中心位置两者相差最大,边缘处相差最小。  相似文献   

9.
改善离子推力器束流均匀性的方法   总被引:5,自引:5,他引:0  
郑茂繁  江豪成 《推进技术》2011,32(6):762-765,775
离子推力器的束流分布,直接影响离子推力器离子光学系统(亦称栅极组件)的性能和寿命。通过对离子推力器离子光学系统的改进和放电室磁场的优化,使束流均匀性系数R值达到0.7左右。离子推力器束流分布均匀性的有效提高,有助于改善离子光学系统的受热分布,降低离子光学系统的温度,并能减小其温度差,使离子光学系统的热应力和热变形降低,进而延长离子推力器的寿命。  相似文献   

10.
以放电室阳极振荡电压和放电损耗的最小化为目标,结合正交试验方法,获得了性能提升后可实现长期稳定工作的LIPS-200离子推力器最佳磁路结构与磁场构型。基于此,运用等效磁路方法,采用有限元离散形式,建立了LIPS-200离子推力器放电室磁场模型,研究了特定空间排布下电磁体的永磁体替代方案。利用放电室磁感应强度测试和整机工作性能对比验证了永磁体替代方案的等效性及分析方法的可行性和计算结果的正确性。结果表明:两种磁场状态下的推力器放电室特征位置磁感应强度相对误差低于5%,且推力器工作敏感参数变化情况符合预期,满足磁路等效目标,达到磁路结构再优化,工作性能再提升的整体目标。   相似文献   

11.
孙明明  耿海  郑艺 《推进技术》2020,41(5):1193-1200
离子推力器的输入参数设计直接决定其工作性能以及寿命,为了有效降低在前期设计阶段,由于输入参数设计缺陷导致的输出性能和预估寿命不一致性,以及后期优化改进所带来的风险及高昂成本,根据离子推力器工作过程的宏观描述以及寿命理论预估方法,基于Matlab/Simulink建立起离子推力器输入参数设计模型,实现了根据推力、比冲、效率等设计指标完成输入参数计算以及寿命预估的目的。结果显示:以30cm离子推力器为例,根据参数设计模型得到5kW额定工况下的关键输入参数与目前实际输入参数的比对误差均在5%以内,而模型得到的关键指标参数与冷启动试验测试值的比对误差同样在5%以内,3600h后的加速栅孔径刻蚀计算结果与试验结果比对误差在10%以内,证明了离子推力器输入参数设计模型的合理性,输入参数设计模型可用于后续同类型离子推力器的早期输入参数确定以及设计指标匹配性评价。  相似文献   

12.
使用电动电源线确保使用电力,它等于几十千瓦。 建议它应该高达10000秒。 Keldysh研究中心(KeRC)正在开发推进系统。 35千瓦离子推进器和FCU-500流量控制单元。 IT-500和FCU-500的2000小时寿命测试是 离子推进器大部分运行2018小时,使用40千克氙气。 本文还介绍了磁场和离子光学的改进以及石墨网格的发展状况。  相似文献   

13.
为了发展基于电推进的大功率空间运输系统,需要开发和验证功率达数十千瓦的电推进系统,深空任务电推进系统优化的比冲要求高达105s。凯尔迪什研究中心(KeRC)正在开发这样的电推进部件。本文概述了 35kW离子推力器 IT-500及其流动单元FCU-500的验证现状。作为其验证的一部分,完成了IT-500 和 FCU-500的2000h寿命试验。其中,离子推力器大部分验证条件是:输入功率17.8kW,使用了40kg氙,2018h寿命试验。本文介绍了磁场和离子光学以及石墨格栅开发现状。  相似文献   

14.
宋莹莹  王蒙  顾左  孔令轩 《推进技术》2019,40(7):1668-1675
目前Kaufman离子推力器主要有两种最具代表性的配电方式:屏栅极电源正端分别连接阳极电源正、负端的配电方式。为了研究配电方式对Kaufman离子推力器工作性能的影响,基于等离子体理论和推力器工作原理,分析两种主要配电方式下放电室电极电势及电流平衡关系,推导了放电室等离子体特性表达式,理论分析了配电方式对离子推力器多种性能参数的影响。结合兰州空间技术物理研究所自研的LIPS300离子推力器在两种配电方式下工作在3kW和5kW的性能试验,通过解析方法对离子推力器多种工作参数和性能参数进行分析,试验结果与理论分析结果具有良好的一致性。研究表明:采用屏栅极电源正端连接阳极电源负端的配电方式能够获得更大的推力和比冲,并能提高离子对栅极透明度,减少离子对屏栅极的溅射,从而提高栅极寿命,但束离子产生成本稍高。研究结果可为离子推力器配电方式的设计与优化提供依据。  相似文献   

15.
为了实现离子推力器多模式化,分析了离子推力器功率宽范围调节限制因素,提出了两种宽范围调节策略;针对我国小行星探测任务,完成了30cm多模式离子推力器研制、功率宽范围调节限制条件确定、以及两种调节策略下多模式工作点设计及对比研究。结果显示,通过降低放电室磁场强度可延伸离子推力器最小稳定工作功率,提高束流均匀性,实现离子推力器更宽功率范围多工作点设计;功率宽范围调节主要是屏栅电压和束电流的宽范围调节,二者通过栅极导流系数限制和交叉限制而约束;推力随功率增加呈线性增加关系,比冲随功率的增加总体上呈先快速增加后趋于稳定的趋势;30cm多模式离子推力器在0.25kW~5kW内稳定工作,推力10mN~186mN,比冲1522s~3586s。  相似文献   

16.
离子推力器欠聚焦冲击电流的数值模拟   总被引:1,自引:1,他引:0  
李娟  刘洋  楚豫川  曹勇 《推进技术》2011,32(6):751-755,899
离子光学系统的离子束引出过程是离子推力器重要的物理过程,该过程直接关系到推力器的推力、比冲、效率等参数。为研究离子在离子推力器光学系统中的运动特性,使用了基于IFE-PIC(Immersed Finite Element Particle-In-Cell)的离子推力器光学系统离子束引出过程的三维数值计算模型,计算了栅极间电场分布、电荷密度,栅极冲击电流及欠聚焦极限。计算结果表明,当屏栅极电压不同时,发生欠聚焦的等离子束电流也不同。在欠聚焦工况下,一部分离子与栅极碰撞,产生冲击电流。冲击电流随电离室等离子体数密度增加而增大。  相似文献   

17.
离子推力器极少数据可靠性评估方法   总被引:1,自引:1,他引:0  
针对只有两台离子推力器进行寿命试验,试验结果为极少失效数据的情况,建立了一种离子推力器整机可靠性评估方法.通过引入区间统计量的概念,充分开发从最后一个失效数据继续试验到没有发生产品失效这一重要试验信息,由高斯-马尔科夫定理计算出寿命分布参数的最佳线性无偏估计,并给出离子推力器可靠度和寿命的单侧置信下限.最后,对美国NASA研制的型号为XIPS-13的离子推力器进行可靠性评估,得出了其寿命需求10000h的可靠度单侧置信下限为0.87及给定可靠度为0.9时的寿命单侧置信下限为9024.6h,该方法精度较高,便于工程应用.   相似文献   

18.
为了实现多模式离子推力器在宽功率范围内最优性能和可靠性,基于30cm多模式离子推力器通过实验开展了阴极和中和器羽状模式转变点流率、放电电压30V对应阴极流率和放电损耗曲线与束电流关系研究。30cm多模式离子推力器束电流从0.3A增加到3.3A时,阴极羽状模式转变点流率值从0.017mg/s增加到0.163mg/s,放电电压30V对应阴极流率从0.129mg/s增加到0.231mg/s,中和器羽状模式转变点流率从0.030mg/s增加到0.191mg/s。随放电室工质利用率的增加,在小束电流下放电损耗迅速增加;当束电流大于1.5A时,放电损耗对放电室工质利用率的变化较为迟钝。基于上述流率特性实验结果完成了30cm多模式离子推力器宽功率范围35个工作点下最佳流率设计。在设计的工作流率下,放电电压小于30V,阴极和中和器均工作在点状模式,实测推力为9.6mN~185.2mN、比冲为1332s~3568s、功率为258W~4761W。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号