首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
This paper describes experimental results from a development program focused on maturing Titan aerobot technology in the areas of mechanical and thermal subsystems. Results from four key activities are described: first, a cryogenic balloon materials development program involving coupon and cylinder tests and culminating in the fabrication and testing of an inflated 4.6 m long prototype blimp at 93 K; second, a combined lab experiment and numerical simulation effort to assess potential problems resulting from radioisotope power source waste heat generation near an inflated blimp; third, an aerial deployment and inflation development program consisting of laboratory and helicopter drop tests on a near full scale (11 m long) prototype blimp; and fourth, a proof of concept experiment demonstrating the viability of using a mechanically steerable high gain antenna on a floating blimp to perform direct to Earth telecommunications from Titan. The paper provides details on all of these successful activities and discusses their impact on the overall effort to produce mature systems technology for future Titan aerobot missions.  相似文献   

2.
We compared 8 years of ozone measurements taken at Lindau (51.66° N, 10.13° E) at altitudes between 40 and 60 km using the microwave technique with the CIRA ozone reference model that was established 20 years ago (Keating et al., 1990). We observed a remarkable decrease in ozone density in the stratopause region (i.e., an altitude of 50 km), but the decrease in ozone density in the middle mesosphere (i.e., up to 60 km in altitude) is slight. Likewise, we observed only a moderate decrease in the atmospheric region below the stratopause. Other studies have found the strongest ozone decrease at 40 km and a more moderate decrease at 50 km, which is somewhat in contradiction to our results. This decrease in ozone density also strongly depends on the season. Similar results showed model calculations using the GCM COMMA-IAP when considering the increase in methane. In the lower mesosphere/stratopause region, the strongest impact on the concentration of odd oxygen (i.e., O3 and O) was observed due to a catalytic cycle that destroys odd oxygen, including atomic oxygen and hydrogen radicals. The hydrogen radicals mainly result from an increase in water vapor with the growing anthropogenic release of methane. The finding suggesting that the stratopause region is apparently attacked more strongly by the water vapor increase has been interpreted in terms of the action of this catalytic cycle, which is most effective near the stratopause and amplified by a positive feedback between the ozone column density and the ozone dissociation rate, thereby chemically influencing the ozone density. However, the rising carbon dioxide concentration cools the middle atmosphere, thereby damping the ozone decline by hydrogen radicals.  相似文献   

3.
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 m3 and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.  相似文献   

4.
The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.  相似文献   

5.
The Pioneer anomaly, an unexpected acceleration of the Pioneer 10 and 11 spacecraft of ∼8.5 × 10−10 ms−2 directed towards the inner Solar System, has been of great interest for the physics community during the past decade: considered explanations range from new physical concepts to conventional mechanism. It is shown that non-isotropic outgassing of the complete spacecraft structure is comparable in magnitude and direction to the effect and should be considered as a significant contribution to the anomalous acceleration. Although gas leaks from e.g. the propulsion system and propulsive mass loss mechanism have been discarded as possible explanations for the anomaly, the arguments used against such mechanisms do not apply to global outgassing from the spacecraft.  相似文献   

6.
This paper describes the design, fabrication and testing of a full scale prototype balloon intended for long duration flight in the upper atmosphere of Venus. The balloon is 5.5 m in diameter and is designed to carry a 45 kg payload at an altitude of 55 km. The balloon material is a 180 g/m2 multi-component laminate comprised of the following layers bonded together from outside to inside: aluminized Teflon film, aluminized Mylar film, Vectran fabric and a polyurethane coating. This construction provides the required balloon functional characteristics of low gas permeability, sulfuric acid resistance and high strength for superpressure operation. The design burst superpressure is 39,200 Pa which is predicted to be 3.3 times the worst case value expected during flight at the highest solar irradiance in the mission profile. The prototype is constructed from 16 gores with bi-taped seams employing a sulfuric acid resistant adhesive on the outside. Material coupon tests were performed to evaluate the optical and mechanical characteristics of the laminate. These were followed by full prototype tests for inflation, leakage and sulfuric acid tolerance. The results confirmed the suitability of this balloon design for use at Venus in a long duration mission. The various data are presented and the implications for mission design and operation are discussed.  相似文献   

7.
The Arthur Clarke Mars Greenhouse is a unique research facility dedicated to the study of greenhouse engineering and autonomous functionality under extreme operational conditions, in preparation for extraterrestrial biologically-based life support systems. The Arthur Clarke Mars Greenhouse is located at the Haughton Mars Project Research Station on Devon Island in the Canadian High Arctic. The greenhouse has been operational since 2002. Over recent years the greenhouse has served as a controlled environment facility for conducting scientific and operationally relevant plant growth investigations in an extreme environment. Since 2005 the greenhouse has seen the deployment of a refined nutrient control system, an improved imaging system capable of remote assessment of basic plant health parameters, more robust communication and power systems as well as the implementation of a distributed data acquisition system. Though several other Arctic greenhouses exist, the Arthur Clarke Mars Greenhouse is distinct in that the focus is on autonomous operation as opposed to strictly plant production. Remote control and autonomous operational experience has applications both terrestrially in production greenhouses and extraterrestrially where future long duration Moon/Mars missions will utilize biological life support systems to close the air, food and water loops. Minimizing crew time is an important goal for any space-based system. The experience gained through the remote operation of the Arthur Clarke Mars Greenhouse is providing the experience necessary to optimize future plant production systems and minimize crew time requirements. Internal greenhouse environmental data shows that the fall growth season (July–September) provides an average photosynthetic photon flux of 161.09 μmol m−2 s−1 (August) and 76.76 μmol m−2 s−1 (September) with approximately a 24 h photoperiod. The spring growth season provides an average of 327.51 μmol m−2 s−1 (May) and 339.32 μmol m−2 s−1 (June) demonstrating that even at high latitudes adequate light is available for crop growth during 4–5 months of the year. The Canadian Space Agency Development Greenhouse [now operational] serves as a test-bed for evaluating new systems prior to deployment in the Arthur Clarke Mars Greenhouse. This greenhouse is also used as a venue for public outreach relating to biological life support research and its corresponding terrestrial spin-offs.  相似文献   

8.
Processes which produce slow changes in air composition in a closed ecological system (CES) may not be noticed if the leak rate of the CES is significant. Dilution of the system’s air with outside air can mask these processes. A tightly closed CES provides the opportunity for slow changes to accumulate over time and be observed and measured. Biosphere 2 (volume 200,000 m3) had a low leak rate of less than 10 percent per year. Oxygen declined slowly at varying rates reflecting seasonal influences, which averaged to about 140 ppm per day during the first 16 months of the two-year closure. Computer simulations of the observed rate of oxygen loss combined with other hypothetical leak rates suggest that the decline would have been hidden by a leak rate as low as one percent per day. Sealing Biosphere 2 involved rigorous design specifications and inclusion of two expansion chambers (called “lungs”) to accommodate expansion/contraction of the atmosphere, which enabled limiting the pressure difference between inside and outside atmospheres to the range of ±8 Pa (0.08 mBar). Measurement of leak rate was by two methods: the first, measuring the rate of deflation of the lungs while holding a constant elevated pressure differential enabled calculation of an estimated leak rate within the usual operating pressure differential range; the second was to measure the progressive dilution of trace gases spiked into the atmosphere. Both methods confirmed leakage to be less than 10 percent per year. Operational data from the 40 m3 Laboratory Biosphere is used to illustrate how normal variations of temperature, humidity and barometric pressure would combine to force leakage and rapidly dilute the internal atmosphere if it were not equipped with a lung. It is demonstrated that very high degrees of closure for a CES enable experimental observation of small imbalances in atmospheric cycles or slow accumulation of trace gases that could otherwise be masked by dilution with atmosphere external to the CES.  相似文献   

9.
The present work focuses on the determination of the in orbit performance of the Alsat-1 microsatellite propulsion system. The satellite mass is 90 kg, of which 6.2 kg is the propulsion system dry mass. The system is a butane propulsion system using low power resistojet thruster with 2.3 kg of propellant. The liquefied butane gas was selected due to its higher storage density and safety compared to the other propellants used for microsatellites. The purpose of this paper is the analysis of the firings performed after the launch of the satellite and to evaluate the system specific impulse and thrust level during the system lifetime. A total of 273 firings were performed on the Alsat-1 propulsion system in the period between the end of 2002 and mid 2009, the cumulated firing time is more than 12 h 49 min. The analysis of all the propulsion telemetry data shows that the system provides a total mission delta V of 25.3 m/s which is more than the 10 m/s specified for this mission. Furthermore, the mission average specific impulse and thrust are respectively 99.9 s and 48.8 mN.  相似文献   

10.
Electric discharge between two electrically charged surfaces occurs at a well-defined, gas-dependent combination of atmospheric pressure and the distance between those two surfaces, as described by Paschen’s law. The understanding of when the discharge will occur in the conditions present on Mars is essential for designing space-flight hardware that will operate on the Martian surface as well as understanding electrical discharge processes occurring in the Martian atmosphere. Here, we present experimentally measured Paschen curves for a gas mixture representative of the Martian atmosphere and compare our results to breakdown voltages of carbon dioxide, nitrogen, and helium as measured with our system and from the literature. We will discuss possible implications for instrument development as well as implications for processes in the Martian atmosphere. The DC voltage at which electric discharge occurred between two stainless steel spheres was measured at pressures from 10−2 to 100 torr in all gases. We measured a minimum voltage for discharge in the Mars ambient atmosphere of 410 ± 10 V at 0.3 torr cm. As an application, the breakdown properties of space-qualified, electrical wires to be used in the Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) were studied.  相似文献   

11.
The precipitation of solar energetic particles, protons as well as electrons, at high latitudes is commonly assumed to be homogeneous across both polar caps. Using Low-Earth Orbit POES (Polar Orbiting Environmental Satellites) we determine particle penetration ratios into the polar atmosphere for protons ranging from about 0.1 MeV to 500 MeV and for electrons spanning about one order of magnitude in energy with a maximum of 0.3 MeV. Based on power law fits for the POES spectrum we show, that for energies interesting for middle and lower atmosphere chemistry, particle flux over the poles is comparable in magnitude to flux at the geostationary orbit or at L1 in interplanetary space. The time period under study are the solar energetic particle (SEP) event series of October/November 2003 and January 2005.  相似文献   

12.
BepiColombo, a mission of ESA (European Space Agency) in cooperation with JAXA (Japan Aerospace Exploration Agency), will explore Mercury, the planet closest to the Sun. BepiColombo will launch in 2014 on a journey lasting up to six and a half years; the data gathering phase should occupy a one year nominal mission, with a possible extension of another year. The data which will be brought back from the orbiters will tell us about the Hermean surface, atmospheric composition, and magnetospheric dynamics; it will also contribute to understanding the history and formation of terrestrial planets. The PHEBUS (Probing of Hermean Exosphere by Ultraviolet Spectroscopy) instrument will be flown on MPO: Mercury Planetary Orbiter, one of the two BepiColombo orbiters. The main purpose of the instrument is to reveal the composition and the distribution of the exosphere of Mercury through EUV (Extreme Ultraviolet: 55–155 nm) and FUV (Far Ultraviolet: 145–315 nm) measurements. A consortium composed of four main countries has been formed to build it. Japan provides the two detectors (EUV and FUV), Russia implements the scanning system, and France and Italy take charge of the overall design, assembly, test, integration, and also provide two small NUV (Near Ultraviolet) detectors (for the light from calcium and potassium molecules). An optical prototype of the EUV detector which is identical to the flight configuration has been manufactured and evaluated. In this paper, we show the first spectra results observed by the EUV channel optical prototype. We also describe the design of PHEBUS and discuss the possibility of detecting noble gases in Mercury’s exosphere taking the experimental results so far into account.  相似文献   

13.
Waste treatment and management for manned long term exploratory missions to moon will be a challenge due to longer mission duration. The present study investigated appropriate digester technologies that could be used on the base. The effect of stirring, operation temperature, organic loading rate and reactor design on the methane production rate and methane yield was studied. For the same duration of digestion, the unmixed digester produced 20–50% more methane than mixed system. Two-stage design which separated the soluble components from the solids and treated them separately had more rapid kinetics than one stage system, producing the target methane potential in one-half the retention time than the one stage system. The two stage system degraded 6% more solids than the single stage system. The two stage design formed the basis of a prototype digester sized for a four-person crew during one year exploratory lunar mission.  相似文献   

14.
Radish (Raphanus sativus), lettuce (Latuca sativa), and wheat (Triticum aestivum) plants were grown at either 98 kPa (ambient) or 33 kPa atmospheric pressure with constant 21 kPa oxygen and 0.12 kPa carbon dioxide in atmospherically closed pressure chambers. All plants were grown rockwool using recirculating hydroponics with a complete nutrient solution. At 20 days after planting, chamber pressures were pumped down as rapidly as possible, reaching 5 kPa after about 5 min and ∼1.5 kPa after about 10 min. The plants were held at 1.5 kPa for 30 min and then pressures were restored to their original settings. Temperature (22 °C) and humidity (65% RH) controls were engaged throughout the depressurization, although temperatures dropped to near 16 °C for a brief period. CO2 and O2 were not detectable at the low pressure, suggesting that most of the 1.5 kPa atmosphere consisted of water vapor. Following re-pressurization, plants were grown for another 7 days at the original pressures and then harvested. The lettuce, radish, and wheat plants showed no visible effects from the rapid decompression, and there were no differences in fresh or dry mass when compared to control plants maintained continuously at 33 or 98 kPa. But radish storage root fresh mass and lettuce head fresh and dry masses were less at 33 kPa compared to 98 kPa for both the controls and decompression treatment. The results suggest that plants are extremely resilient to rapid decompression, provided they do not freeze (from evaporative cooling) or desiccate. The water of the hydroponic system was below the boiling pressure during these tests and this may have protected the plants by preventing pressures from dropping below 1.5 kPa and maintaining humidity near 1.5 kPa. Further testing is needed to determine how long plants can withstand such low pressure, but the results suggest there are at least 30 min to respond to catastrophic pressure losses in a plant production chamber that might be used for life support in space.  相似文献   

15.
The object of investigation is the phenomenon of proton (from tens keV to several MeV) flux enhancement in near-equatorial region (L < 1.15) at altitude up to ∼1300 km (the storm-time equatorial belt). These fluxes are quite small but the problem of their origin is more interesting than the possible damage they can produce. The well known sources of these protons are radiation belt and ring current. The mechanism of transport is the charge-exchange on neutral hydrogen of exosphere and the charge-exchange on oxygen of upper atmosphere. Therefore this belt is something like the ring current projection to low altitudes. Using the large set of satellites data we obtain the average energy spectrum, the approximation of spectrum using kappa-function, the flux dependence on L, B geomagnetic parameters. On the basis of more than 30 years of experimental observations we made the empiric model that extends model of proton fluxes below 100 keV in the region of small L-values (L < 1.15). The model was realized as the package of programs integrated into COSRAD system available via Internet. The model can be used for revision of estimation of dose that low-orbital space devices obtain.  相似文献   

16.
A novel ionisation source which uses commercially available Carbon Nano Tube devices is demonstrated as a replacement for a filament based ionisation source in an ion trap mass spectrometer. The carbon nanotube ion source electron emission was characterised and exhibited typical emission of 30 ± 1.7 μA with an applied voltage differential of 300 V between the carbon nanotube tips and the extraction grid. The ion source was tested for longevity and operated under a condition of continuous emission for a period of 44 h; there was an observed reduction in emission current of 26.5% during operation. Spectra were generated by installing the ion source into a Finnigan Mat ITD700 ion trap mass spectrometer; the spectra recorded showed all of the characteristic m/z peaks from m/z 69 to m/z 219. Perfluorotributylamine spectra were collected and averaged contiguously for a period of 48 h with no significant signal loss or peak mass allocation shift. The low power requirements and low mass of this novel ionisation source are considered be of great value to future space missions where mass spectrometric technology will be employed.  相似文献   

17.
Sea level changes are threatening the human living environments, particularly along the European Coasts with highly dense population. In this paper, coastal sea level changes in western and southern Europe are investigated for the period 1993–2011 using Global Positioning System (GPS), Tide Gauge (TG), Satellite Altimetry (SA), Gravity Recovery and Climate Experiment (GRACE) and geophysical models. The mean secular trend is 2.26 ± 0.52 mm/y from satellite altimetry, 2.43 ± 0.61 mm/y from TG+GPS and 1.99 ± 0.67 mm/y from GRACE mass plus steric components, which have a remarkably good agreement. For the seasonal variations, annual amplitudes of satellite altimetry and TG+GPS results are almost similar, while GRACE Mass+Steric results are a little smaller. The annual phases agree remarkably well for three independent techniques. The annual cycle is mainly driven by the steric contributions, while the annual phases of non-steric (mass component) sea level changes are almost a half year later than the steric sea level changes.  相似文献   

18.
This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments – higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.  相似文献   

19.
OH(6-2) rotational temperature trends and solar cycle effects are studied. Observations were carried out at the Maimaga station (63.04°N, 129.51°E) for the period August 1999 to March 2013. Measurements were conducted with an infrared spectrograph. Temperatures were determined from intensity ratios in the P branch of the OH band. The monthly average residuals of temperature after the subtraction of the mean seasonal variation were used for a search for the solar component of temperature response. The dependence of temperatures on solar activity has been investigated using the Ottawa 10.7 cm flux as a proxy. A linear regression fitting on residual temperatures yields a solar cycle coefficient of 4.24 ± 1.39 K/100 solar flux units (SFU). The cross-correlation analyses showed that changes of the residual temperature follow changes of solar activity with a quasi-two year delay (25 months). The temperature response at the delay of 25 months reaches 7 K/100 SFU. The possible reason of the observed delay can be an influence of quasi-biennial oscillations (QBO) of the atmosphere on the relation of temperature and solar activity. The value of the temperature trend after the subtraction of seasonal and solar components is not statistically significant.  相似文献   

20.
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号