首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented.  相似文献   

2.
This paper reviews various progresses on the ionospheric studies by the scientists in China during the last two years.The main contents concern the 4 aspects of the ionospheric re-search:(1) ionospheric weather and coupling with magnetosphere(polar and auroral ionosphere,ionospheric response to substorms,ionospheric storms);(2) mid-and low-latitude ionospheric clima-tology(ionospheric properties,yearly variations and solar activity dependence,long term variation);(3) ionospheric coupling with neutral atmosphere(gravity waves,tides,planetary waves,background upper atmosphere,and ionospheric response);and(4) ionospheric diagnostics(observation,modeling,and prediction).  相似文献   

3.
This paper reviews various progresses on the ionospheric studies by the scientists in China during the last two years.The main contents concern the 4 aspects of the ionospheric research:(1)ionospheric weather and coupling with magnetosphere(polar and auroral ionosphere,ionospheric response to substorms,ionospheric storms);(2)mid-and low-latitude ionospheric climatology(ionospheric properties,yearly variations and solar activity dependence,long term variation);(3)ionospheric coupling with neutral atmosphere(gravity waves,tides,planetary waves,background upper atmosphere,and ionospheric response);and(4)ionospheric diagnostics(observation,modeling,and prediction).  相似文献   

4.
The data on thermal fluctuations of the topside ionosphere have been measured by Retarding Potential Analyser (RPA) payload aboard the SROSS-C2 satellite over the Indian region for half of the solar cycle (1995–2000). The data on solar flare has been obtained from National Geophysical Data Center (NGDC) Boulder, Colorado (USA) and other solar indices (solar radio flux and sunspot number) were download from NGDC website. The ionospheric electron and ion temperatures show a consistent enhancement during the solar flares. The enhancement in the electron temperature is 28–92% and for ion temperature it is 18–39% compared to the normal day’s average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the variation of sunspot and solar radio flux (F10.7cm). All the events studied in the present paper fall in the category of subflare with almost same intensity. The ionospheric electron and ion temperatures enhancement have been compared with the IRI model values.  相似文献   

5.
It is well known that the solar wind can significantly affect high-latitude ionospheric dynamics. However, the effects of the solar wind on the middle- and low-latitude ionosphere are much less studied. In this paper, we report observations that large perturbations in the middle- and low-latitude ionosphere are well correlated with solar wind variations. In one event, a significant (20–30%) decrease of the midlatitude ionospheric electron density over a large latitudinal range was related to a sudden drop in the solar wind pressure and a northward turning of the interplanetary magnetic field, and the density decrease became larger at lower latitudes. In another event, periodic perturbations in the dayside equatorial ionospheric E × B drift and electrojet were closely associated with variations in the interplanetary electric field. Since the solar wind is always changing with time, it can be a very important and common source of ionospheric perturbations at middle- and low-latitudes. The relationship between solar wind variations and significant ionospheric perturbations has important applications in space weather.  相似文献   

6.
During solar flares, the X-ray radiation suddenly increases, resulting in an increase in the electron density of the atmospheric D region and a strong absorption of short-wave radio waves. Based on Langfang medium frequency (MF) radar, this paper analyzed the variation characteristics of D region in the lower ionosphere from 62 km to 82 km. The analysis focused on multiple C-level and M-level solar flare events before and after the large-scale flare event at 11:53 (UT) on September 6, 2017. The results show that it is difficult to detect the electron density over 70 km in Langfang during solar flares, but the electron density value can be obtained as low as 62 km, and the stronger the flare intensity, the lower the detectable electron density height. Besides, the equal electron density height, the received power of X and O waves will also be significantly reduced during the flares, and the reduction of equal electron density height has a weak linear relationship with flare intensity.  相似文献   

7.
The equatorial ionosphere and thermosphere constitute a coupled system, with its electro dynamical and plasma physical processes being responsible for a variety of ionospheric phenomena peculiar to the equatorial region. The most important of these phenomena are: the equatorial electrojet (EEJ) current system and its instabilities, the equatorial ionization anomaly (EIA), and the plasma instabilities/irregularities of the night ionosphere (associated with the plasma bubble events – ESF). They constitute the major topics of investigations having both scientific and practical objectives. The tidal wind interaction with the geomagnetic field is responsible for the atmospheric dynamo electric fields, that together with the wind system, drives the major phenomena, under quiet conditions. Drastic modifications of these phenomena can occur due to magnetospheric forcing under solar-, interplanetary- and magnetospheric disturbances. They can also undergo significant modifications due to forcing by atmospheric waves (such as planetary- and atmospheric gravity waves) propagating upward or from extra tropics. This article will focus on the ambient conditions of the ionosphere–thermosphere system and the electro dynamics and plasma instability processes that govern the plasma irregularity generation. Major emphasis is given to problems related to the structuring of the equatorial night ionosphere through plasma bubble/ESF irregularity processes. Specific topics to be covered will include: equatorial electric fields, thermospheric winds, sunset electrodynamic processes, plasma drifts, EEJ plasma instability/irregularity generation, nighttime/post sunset plasma bubble irregularity generation, and very briefly, disturbance electric fields and winds and their effect on the ionization anomaly, the TEC and ESF/plasma bubble irregularities.  相似文献   

8.
The geomagnetic storm is a complex process of solar wind/magnetospheric origin. The variability of the ionospheric parameters increases substantially during geomagnetic storms initiated by solar disturbances. Various features of geomagnetic storm act at various altitudes in the ionosphere and neutral atmosphere. The paper deals with variability of the electron density of the ionospheric bottomside F region at every 10 km of altitude during intense geomagnetic storms with attention paid mainly to the distribution of the F1 region daytime ionisation. We have analysed all available electron density profiles from some European middle latitude stations (Chilton, Pruhonice, Ebro, Arenosillo, Athens) for 36 events that occurred in different seasons and under different levels of solar activity (1995–2003). Selected events consist of both depletion and increase of the F2 region electron density. For European higher middle and middle latitude the F1 region response to geomagnetic storm was found to be negative (decrease of electron density) independent on the storm effect on the F2 region. For lower middle latitude the F1 response is weaker and less regular. Results of the analysis also show that the maximum of the storm effect may sometimes occur below the height of the maximum of electron density (NmF2).  相似文献   

9.
This paper presents the global spatial (latitude and altitude) structure and temporal variability of the ∼23-day ionospheric zonally symmetric (s = 0) planetary wave (PW) seen in the Northern winter of 2008/2009 (October 2008–March 2009). It is shown that these ∼23-day ionospheric oscillations are forced from PWs propagating from below. The COSMIC ionospheric parameters foF2 and hmF2 and electron density at fixed altitudes and the SABER temperatures were utilized in order to define the waves which are present simultaneously in the atmosphere and ionosphere. The long-period PWs from the two data sets have been extracted through the same data analysis method. The similarity between the lower thermospheric ∼23-day (s = 0) temperature PW and its ionospheric electron density response provides valuable and strong experimental evidence for confirming the paradigm of atmosphere–ionosphere coupling.  相似文献   

10.
The vertical total electron content (VTEC) time series obtained at São José dos Campos (23.2°S, 45.9°W), Brazil, were statistically analyzed to study the low latitude ionosphere in the Brazilian sector during the year of 2006 (a period of low solar activity). Statistical analysis showed that Probability Density Functions (PDFs) and kurtosis have an intermittent behavior on small-scales (periods from minutes to one day) and presence of two functions on large-scales (periods from 3 to 30 days). The skewness result suggests the presence of some kind of waves due to the action of tropospheric sources (lower atmospheric origin). Results obtained by wavelet transform show strong oscillations with scale-sizes between 3 and 30 days, possibly associated with the planetary oscillations. According to these statistical and wavelet analyses we conjecture that there exist two important factors regarding the ionospheric effects: one factor is due to turbulent states found in small scales and the other factor consists in a more or less deterministic state provided by planetary waves (3–16 days or full solar rotation (27–28 days)). Further, these strong oscillations were also noted in multifractal analysis. We found a decrease of multifractality degree of the same scale-sizes.  相似文献   

11.
对流层特大暴雨天气对电离层变化的影响   总被引:3,自引:2,他引:3  
研究气象活动对电离层变化的影响.利用时序叠加方法,通过对1958-1998年期间发生在武汉的5次特大暴雨天气事件对武汉上空电离层变化的影响进行分析,发现:(1)特大暴雨能够引起低电离层,fbEs和,f0Es参量较明显地减小;(2)特大暴雨对电离层F区寻常波描迹的最低虚高h′F和电离层等效峰高hpF的参量也有一定影响,且随着雨量的增大这种影响作用也会增加;(3)特大暴雨对电离层其他参量影响甚弱或没有影响.本文认为,特大暴雨天气事件对电离层的影响主要来自于动力过程,特别是特大暴雨激发的或相伴的大气重力波、潮汐波和行星波等长周期大尺度过程的作用.  相似文献   

12.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   

13.
In this national biannual report, we will outline some recent progresses in ionospheric studies conducted by Chinese scientists since 2012. The mentioned aspects include: the solar activity control of the ionosphere; couplings between the ionosphere, lower atmosphere and plasmasphere;ionospheric climatology and disturbances; ionospheric irregularities and scintillation; models, data assimilation and simulations; unusual phenomena of the ionosphere; possible seismic signatures presented in ionospheric observations, and some methodology progresses. These progresses will enhance our ability to observe the ionosphere, provide more reasonable understanding about the states of the ionosphere and underlying fundamental processes, and stimulate ionospheric modeling, forecasting and related applications.  相似文献   

14.
In this investigation, we present and discuss the effects of 6 X2-class solar flare events in the ionospheric F region over Brazilian sector that occurred during 2013 to 2015. For this investigation, we present the vertical total electron content (VTEC) observations from nearly 120 Global Positioning System (GPS) receivers all over the Brazilian sector for each event. Also, ionospheric sounding observations obtained in São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S; hereafter referred to as SJC), under the southern crest of the equatorial ionospheric anomaly (EIA), Brazil, are presented. The observations show that the greatest TEC impact occurs with the EUV fluxes increases lasting for more than one hour and when the solar active region is located close to the solar disc center. We present a detailed study of the efficiency of the EUV flux with wavelengths ranging from 0.1 to 190?nm for the F region ionization. The largest increase of ΔTEC occurs below the magnetic equator line, covering mainly the central, northeast, southeast and south regions, which includes the equatorial ionospheric anomaly (EIA) region. The ionograms show partial or total fade out in the echoes traces observed causing blackouts of radio signals of up to 60?min, which can have serious consequences to technological systems of public and private agencies around Brazilian sector. This study can help to better understand the effects of solar flares in the ionospheric F region.  相似文献   

15.
震前地震孕育期地表异常增强的电场,通过大气电导率传输到电离层高度.该异常电场通过非稳态局部加热,可以在电离层高度激发声重波.基于该理论,利用一维时变中纬电离层物理模型,模拟了该扰动源对电离层电子密度的影响.结果表明,重力波引起的中性风速度扰动对电离层电子密度分布影响甚微,该机理无法解释震前电离层异常扰动现象.   相似文献   

16.
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model.  相似文献   

17.
本文比较第17—21太阳周黑子数、地磁A_p指数、各周极大年≥2级耀斑数、磁暴数及第一、二、三大磁暴情况;分析了≥2级耀斑数及磁暴的分布。21周3级耀斑对应磁暴比例低于19、20周,Ⅳ型及米波射电爆发是产生磁暴的重要条件。进一步分析了21周最大磁暴、最大射电爆发引起的磁暴,最严重的电离层短波通讯干扰及有明亮物质抛射的大耀斑、双带大耀斑引起的磁暴等典型例子。最后对SMY期间22个无黑子耀斑作了分析,它们可能引起中小幅度的磁暴。   相似文献   

18.
Solar radio bursts (SRBs) are the signatures of various phenomenon that happen in the solar corona and interplanetary medium (IPM). In this article, we have studied occurrence of Type III bursts and their association with the Sunspot number. This study confirms that occurrence of Type III bursts correlate well with Sunspot number. Further, using the data obtained using e-CALLISTO network, we have investigated drift rates of isolated Type III bursts and duration of the group of Type III bursts. Since Type II, Type III and Type IV bursts are signatures of solar flares and/or CMEs, we can use the radio observations to predict space weather hazards. In this article, we have discussed two events that have caused near Earth radio blackouts. Since e-CALLISTO comprises more than 152 stations at different longitudes, we can use it to monitor the radio emissions from the solar corona 24 h a day. Such observations play a crucial role in monitoring and predicting space weather hazards within few minutes to hours of time.  相似文献   

19.
The ionosphere varies over multiple time scales, which are classified into two categories: the climatology and weather variations. In this national report, we give a brief summary of recent progresses in ionospheric climatology with focus on (1) the seasonal variations, (2) solar cycle effects, and (3) empirical modeling of the ionosphere. The seasonal variations of the ionosphere have been explored in many works to give a more detailed picture with regional and global features at various altitudes by analyzing the observation data from various sources and models. Moreover, a series of studies reported the response of the ionosphere to solar cycle variations, which revealed some novel and detailed features of solar activity dependence of ionospheric parameters at different altitudes. These investigations have improved our understanding on the states of the ionosphere and underlying fundamental processes, provided clues to future studies on ionospheric weather, and guided ionospheric modeling, forecasting and related applications.   相似文献   

20.
本文根据冬季中低纬低电离层中、低频(LF)电波振幅扰动与高纬平流层中大气行昨波活动密切相关的观测事实,分析研究了可能引起低电离层对LF电波吸收变化诸因素的作用后,提出了一种能较好地解释观测现象的物理机制,大气行星波可通过两种方式改变大气离化率q,因而引起低电离层中电子密度N扰动,进而改变由N大小决定的电离层电波吸收值,结果导致LF电波振幅发生相应变化。文中给出了描述这一物理计算公式和某些计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号