首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reduced in vitro NK cytotoxic activity have routinely been observed after both prolonged and short-term space flights. This study investigated the effects of space flight on NK cell functions, NK cell counts and the production of IL-2 and TNF by lymphocytes of French-Russian crew members. In the French cosmonaut, after 21 days space flight, the cytotoxic activity of NK cells, the capacity the NK cells to bind and lyse the individual target cells and the percentage of NK cells were decreased. In this cosmonaut a twofold reduction TNF production in cultures of lymphocytes stimulated with PMA and with the mixture of PHA and PMA was observed on the first day after landing. However, the activity of the production of TNF in 48-hour PHA-cultures of lymphocytes was unchanged and the biological activity of IL-2 was not reduced. The immunological examination did not detecte any substantial deviations from the norm in both russian cosmonauts after 197 days space flight. Various explanations for decreased cytotoxicity in cosmonauts after space flight can be proposed, and these include the defective function of NK cells and reduced numbers of circulating effector cells.  相似文献   

2.
A Cogoli 《Acta Astronautica》1981,8(9-10):995-1002
This paper gives a summary of the principal hematological and immunological changes observed in crews after space flight. Reduction of red blood cell mass (2-21%) and of hemoglobin mass (12-33%) is generally observed after the US and Soviet space missions. The changes are accompanied with a loss of plasma volume (4-16%). Erythrocyte and hemoglobin concentrations in the blood remain constant, suggesting that the changes are driven by a feed-back mechanism. Immunological changes consist mainly of reduced T-lymphocyte reactivity. The results of the 96-day and 140-day Salyut-6 missions suggest that the adaptation of the immune system to spaceflight occurs in two stages: the first takes place during the first 2-3 months in space, the second follows and consists of further weakening of the immune response. Our experiments with human lymphocytes in vitro indicate that high-g enhance, whereas low-g depress lymphocyte activity. Finally, our investigations to be performed on Spacelab are described.  相似文献   

3.
The nematode Caenorhabditis elegans, a popular organism for biological studies, is being developed as a model system for space biology. The chemically defined liquid medium, C. elegans Maintenance Medium (CeMM), allows axenic cultivation and automation of experiments that are critical for spaceflight research. To validate CeMM for use during spaceflight, we grew animals using CeMM and standard laboratory conditions onboard STS-107, space shuttle Columbia. Tragically, the Columbia was destroyed while reentering the Earth's atmosphere. During the massive recovery effort, hardware that contained our experiment was found. Live animals were observed in four of the five recovered canisters, which had survived on both types of media. These data demonstrate that CeMM is capable of supporting C. elegans during spaceflight. They also demonstrate that animals can survive a relatively unprotected reentry into the Earth's atmosphere, which has implications with regard to the packaging of living material during space flight, planetary protection, and the interplanetary transfer of life.  相似文献   

4.
中国首次交会对接任务的技术成就和展望   总被引:2,自引:1,他引:1  
尚志 《航天器工程》2011,20(6):11-15
首次交会对接任务的成功实施,使中国突破和基本掌握了航天器交会对接及其组合体的控制与管理技术,标志着中国载人航天工程二期任务取得重大突破,为空间实验室及后期空间站的建设奠定了坚实基础。文章对国内外交会对接技术进行了对比,对所取得的技术成就进行了综述,指出任务成功具有提升国家威望、产生广泛社会效益、带动基础学科发展、推动航...  相似文献   

5.
We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10?cm cube-format payloads aboard the 5.5?kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650?km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48?h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.  相似文献   

6.
Human interest in spaceflight is ancient. It is therefore ironic that, at a time when humans finally have the capability to travel in space, the notion that we should do so is being questioned. The author analyses the reasons for this — the historical/political and technological contingency of the Space Age and the sudden falling away of the conditions which drove space activity — and in the process provides a critique of the forgoing article and the tendency to search for utilitarian justifications of human spaceflight. He argues rather that space programmes will thrive only when driven by non-material cultural and political forces. US-Russian cooperation, which has principally been undertaken for geopolitical reasons is a model for the future.  相似文献   

7.
Crawford IA 《Astrobiology》2010,10(8):853-6; discussion 857-8
Following on from ideas presented in a recent paper by Schneider et al. on "The Far Future of Exoplanet Direct Characterization," I argue that they have exaggerated the technical obstacles to performing such "direct characterization" by means of fast (order 0.1c) interstellar space probes. A brief summary of rapid interstellar spaceflight concepts that may be found in the literature is presented. I argue that the presence of interstellar dust grains, while certainly something that will need to be allowed for in interstellar vehicle design, is unlikely to be the kind of showstopper suggested by Schneider et al. Astrobiology as a discipline would be a major beneficiary of developing an interstellar spaceflight capability, albeit in the longer term, and I argue that astrobiologists should keep an open mind to the possibilities.  相似文献   

8.
The question is: should the United States and nations at large pursue a human spaceflight program (and if so, why)? I offer an unwavering positive answer to this question, and state the reasons for it while considering the broad challenges and benefits of (human) spaceflight. Space exploration is a human activity that is intrinsically forward-looking, and as such, has positive potential. Both national and international space programs can galvanize the population, inspire the youth, foster job-creation, and motivate the existing workforce. The nature of the enterprises involved—their scale, novelty, and complexity—requires a steady and continuous upward progression toward greater societal, scientific and technological development. That is, in order to overcome the challenges of human spaceflight, progress is required. More to the point, the survival of humanity depends on expanding beyond the confines of our planet. Human spaceflight, in short, presents us with an opportunity to significantly advance the nation and the global community.  相似文献   

9.
Spaceflight experiments involving biological specimens face unique challenges with regard to the on orbit harvest and preservation of material for later ground-based analyses. Preserving plant material for gene expression analyses requires that the tissue be prepared and stored in a manner that maintains the integrity of RNA. The liquid preservative RNAlater (Ambion) provides an effective alternative to conventional freezing strategies, which are limited or unavailable in current spaceflight experiment scenarios. The spaceflight use of RNAlater is enabled by the Kennedy space center fixation tube (KFT), hardware designed to provide the necessary containment of fixatives during the harvest and stowage of biological samples in space. Pairing RNAlater with the KFT system provides a safe and effective strategy for preserving plant material for subsequent molecular analyses, a strategy that has proven effective in several spaceflight experiments. Possible spaceflight scenarios for the use of RNAlater and KFTs are explored and discussed.  相似文献   

10.
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity.  相似文献   

11.
《Acta Astronautica》2010,67(11-12):1608-1612
The Human Space Flight Requirements (promulgated by the U.S. Federal Aviation Administration) seek to protect the fledgling commercial space flight industry by shifting risk from the operator to the space flight participants. However, in order to do this effectively the regulations require a great deal of information to be given to the participants. The information required might be extensive enough that it could be considered “technical data” under the International Traffic in Arms Regulations. If this is the case then commercial spaceflight companies will have to get export licenses for non-U.S. participants on their flights which could cause additional costs as well as other problems.  相似文献   

12.
During spaceflight the immune system is one of the most affected systems of the human body. During the SIMBOX (Science in Microgravity Box) mission on Shenzhou-8, we investigated microgravity-associated long-term alterations in macrophageal cells, the most important effector cells of the immune system. We analyzed the effect of long-term microgravity on the cytoskeleton and immunologically relevant surface molecules. Human U937 cells were differentiated into a macrophageal phenotype and exposed to microgravity or 1g on a reference centrifuge on-orbit for 5 days. After on-orbit fixation, the samples were analyzed with immunocytochemical staining and confocal microscopy after landing. The unmanned Shenzhou-8 spacecraft was launched on board a Long March 2F (CZ-2F) rocket from the Jiuquan Satellite Launch Center (JSLC) and landed after a 17-day-mission. We found a severely disturbed actin cytoskeleton, disorganized tubulin and distinctly reduced expression of CD18, CD36 and MHC-II after the 5 days in microgravity. The disturbed cytoskeleton, the loss of surface receptors for bacteria recognition, the activation of T lymphocytes, the loss of an important scavenger receptor and of antigen-presenting molecules could represent a dysfunctional macrophage phenotype. This phenotype in microgravity would be not capable of migrating or recognizing and attacking pathogens, and it would no longer activate the specific immune system, which could be investigated in functional assays. Obviously, the results have to be interpreted with caution as the model system has some limitations and due to numerous technical and biological restrictions (e.g. 23 °C and no CO2 supply during in-flight incubation). All parameter were carefully pre-tested on ground. Therefore, the experiment could be adapted to the experimental conditions available on Shenzhou-8.  相似文献   

13.
《Space Policy》2014,30(3):143-145
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to ‘endure’ the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.  相似文献   

14.
The activity of the sympathetic adrenal system in cosmonauts exposed to a stay in space lasting for about half a year has so far been studied only by measuring catecholamine levels in plasma and urine samples taken before space flight and after landing. The device "Plasma 01", specially designed for collecting and processing venous blood from subjects during space flight on board the station Salyut-7 rendered it possible for the first time to collect and freeze samples of blood from cosmonauts in the course of a long-term 237-day space flight. A physician-cosmonaut collected samples of blood and urine from two cosmonauts over the period of days 217-219 of their stay in space. The samples were transported to Earth frozen. As indicators of the sympathetic adrenal system activity, plasma and urine concentrations of epinephrine and norepinephrine as well as urine levels of the catecholamine metabolites metanephrine, normetanephrine, and vanillylmandelic acid were determined before, during and after space flight. On days 217-219 of space flight plasma epinephrine and norepinephrine levels were slightly increased, yet not substantially different from normal. During stress situations plasma norepinephrine and epinephrine levels usually exhibit a manifold increase. On days 217-219 of space flight norepinephrine and epinephrine levels in urine were comparable with pre-flight values and the levels of their metabolites were even significantly decreased. All the parameters studied, particularly plasma norepinephrine as well as urine norepinephrine, normetanephrine, and vanillylmandelic acid, reached the highest values 8 days after landing. The results obtained suggest that, in the period of days 217-219 of the cosmonauts stay in space in the state of weightlessness, the sympathetic adrenal system is either not activated at all or there is but a slight activation induced by specific activities of the cosmonauts, whereas in the process of re-adaptation after space flight on Earth this system is considerably more markedly activated.  相似文献   

15.
Meshkov D  Rykova M 《Acta Astronautica》1995,36(8-12):719-726
The nature of the changes of resistance to infection seems to be very important. Our studies indicate that different functions of natural killers could be depressed after the spaceflight. The decrease of the percentage of the lymphocytes that can bind target cells lead to the lowering of the “active” NK level and this can be resulted in the depression of total NK activity and lowering of resistance to viral and tumor antigens. The investigation of natural killer cells in cosmonauts before and after short and long-term spaceflights also revealed the important role of spaceflight duration, stress and individual immune reactivity.  相似文献   

16.
Johnson PC 《Acta Astronautica》1979,6(10):1335-1341
The blood volume (BV), plasma volume (PV), and extracellular fluid volume changes produced in crewmembers during spaceflights of 11-84 days were compared to changes after 14 or 28 days of bedrest. Spaceflight and bedrest produce approximately equal BV changes but the recorded PV change after spaceflight was less. However, the diurnal change in PV may explain the smaller decreases recorded after spaceflight. The cardiovascular deconditioning caused by spaceflight and bedrest was compared using the mean heart rate response to lower body negative pressure (LBNP) testing at -50 mmHg pressure. These tests show approximately equal LBNP produced heart rate changes after bedrest and spaceflight. A countermeasure which includes 4 hr of LBNP treatment at -30 mmHg and the ingestion of one l. of saline was studied and found capable of returning the heart rate response and the PV of bedrested subjects to control (prebedrest) levels suggesting that it would be useful to the crewmembers after a spaceflight.  相似文献   

17.
2010 saw both the unveiling of a new US National Space Policy and the announcement of a fundamentally different strategy for US human spaceflight that would move from the NASA-government-led Apollo-style approach to a greater reliance on the private sector and international cooperation. This viewpoint puts forward arguments on why change in the US approach to human spaceflight is needed, while acknowledging that achieving it in the face of vested interests and threats to jobs and livelihoods is extremely difficult. It suggests that greater US recognition of the need to ensure the sustainability of space activity (by addressing debris, radio-frequency interference and potential deliberate disruption of spacecraft), and an apparent willingness to countenance international norms to govern space activities, could be the new policy’s most lasting heritage.  相似文献   

18.
《Acta Astronautica》2007,60(4-7):223-233
Purpose: Orthostatic stability on Earth is maintained through sympathetic nerve activation sufficient to increase peripheral vascular resistance and defend against reductions of blood pressure. Orthostatic instability in astronauts upon return from space missions has been linked to blunted vascular resistance responses to standing, introducing the possibility that spaceflight alters normal function between sympathetic efferent traffic and vascular reactivity.Methods: We evaluated published results of spaceflight and relevant ground-based microgravity simulations in an effort to determine responses of the sympathetic nervous system and consequences for orthostatic stability.Results: Direct microneurographic recordings from humans in space revealed that sympathetic nerve activity is increased and preserved in the upright posture after return to Earth (STS-90). However, none of the astronauts studied during STS-90 presented with presyncope postflight, leaving unanswered the question of whether postflight orthostatic intolerance is associated with blunted sympathetic nerve responses or inadequate translation into vascular resistance.Conclusions: There is little evidence to support the concept that spaceflight induces fundamental sympathetic neuroplasticity. The available data seem to support the hypothesis that regardless of whether or not sympathetic traffic is altered during flight, astronauts return with reduced blood volumes and consequent heightened baseline sympathetic activity. Because of this, the ability to withstand an orthostatic challenge postflight is directly proportional to an astronaut's maximal sympathetic activation capacity and remaining sympathetic reserve.  相似文献   

19.
Two ground-based methods of weightlessness simulation--a computer model of erythropoiesis feedback regulation and bedrest--were used to investigate the mechanisms which lead to loss of red cell mass during spaceflight. Both methods were used to simulate the first Skylab mission of 28 days. Human bedrest subjects lose red cell mass linearly with time and in this study the loss was 6.7% at the end of four weeks (compared to 14% in Skylab). Postbedrest recovery of red cell mass was delayed for two weeks during which time a further decline in this quantity was noted. This is consistent with the first Skylab mission but not with the two longer flights of two and three months. Hemoconcentration, observed early in the study, was essentially maintained despite red cell loss because of continued loss of plasma volume. The computer model, using the time-varying hematocrit data to estimate red cell production rates, predicted dynamic behavior of plasma volume and red cell mass that was in close agreement with the measured values. The results support the hypothesis that red cell loss during supine bedrest is a normal physiological feedback process in response to hemoconcentration enhanced tissue oxygenation and suppression of red cell production. In contrast, the delayed postbedrest recovery of red cell mass was more difficult to explain, especially in the light of enhanced reticulocyte indices observed at the onset on ambulation. Model simulation suggested the possibilities, still to be experimentally demonstrated, that this period was marked by some combination of increased oxygen-hemoglobin affinity, small reductions in mean red cell life span, ineffective erythropoiesis, or abnormal reticulocytosis. The question of whether hemoconcentration is the sole contributor to spaceflight red cell losses also remains to be resolved.  相似文献   

20.
The Biostack experiments I and II were flown on board the Apollo 16 and 17 command modules in order to obtain information on the biological damage produced by the bombardment of heavy high-energy (HZE) particles of cosmic radiation during spaceflight. Such data are required for estimating radiation hazards in manned spaceflight. Seven biological systems in resting state (Bacillus subtilis spores, Colpoda cucullus cysts, Arabidopsis thaliana seeds, and eggs of Artemia salina, Tribolium castaneum and of Carausius morosus) were accommodated in the two Biostacks. By using a special sandwich construction of visual track detectors and layers of biological objects, identification of each hit biological object was achieved and the possible biological damage correlated with the physical features of the responsible HZE-particle. In the different systems the degree of damage depended on whether the hit cell was replaceable or not. A high sensitivity to HZE-particle bombardment was observed on Artemia salina eggs; 90% of the embryos, which were induced to develop from hit eggs, died at different developmental stages. Malformations of the abdomen or the extremities of the nauplius were frequently induced. In contrast, the growth of hit Vicia faba radiculae and the germination of hit Arabidopsis thaliana seeds and hit Bacillus subtilis spores were not influenced remarkably. But there was an increase in multicaulous plants and a reduction in the outgrowth of the bacterial spores. In addition, information was obtained on the fluence of the HZE-particles, on their spectrum of charge and energy loss, and on the absorption by the Apollo spacecraft and the Biostack material itself. This will help to improve knowledge concerning radiation conditions inside of spacecrafts, necessary to secure a maximum possible protection to the astronauts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号