首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Data of galactic cosmic rays, solar and geomagnetic activities and solar wind parameters on the one side and car accident events (CAE) in Poland on the other have been analyzed in order to reveal the statistical relationships among them for the period of 1990-2001. Cross correlation and cross spectrum of the galactic cosmic ray intensity, the solar wind (SW) velocity, Kp index of geomagnetic activity and CAE in Poland have been carried out. It is shown that in some epochs of the above-mentioned period there is found a reliable relationship between CAE and solar and geomagnetic activities parameters in the range of the different periodicities, especially, 7 days. The periodicity of 7 days revealed in the data of the CAE has the maximum on Friday without any exception for the minimum and maximum epochs of solar activity. However, the periodicity of 7 days is reliably revealed in other parameters characterizing galactic cosmic rays, SW, solar and geomagnetic activities, especially for the minimum epoch of solar activity. The periodicity of 3.5 days found in the series of CAE data more or less can be completely ascribed to the social effects, while the periodicity of 7 days can be ascribed to the social effect or/to the processes on the Sun, in the interplanetary space and in the Earth's magnetosphere and atmosphere.  相似文献   

2.
Features of two successive Forbush effects of the galactic cosmic ray intensity in October–November 2003 have been studied based on the neutron monitors data. The rigidity spectrum of the galactic cosmic ray intensity in the course of the first Forbush effect (22–27 October) is gradually hardening, while the rigidity spectrum of the second Forbush effect (28 October–10 November) from the starting moment is very hard. As far, the energy range of the turbulence of the interplanetary magnetic field is in general responsible for the diffusion of galactic cosmic ray particles of the energy 5–50 GeV (to which neutron monitors are sensitive), we postulate that the gradually hardening (from day to day) of the rigidity spectrum of the first Forbush effect is associated with the enhancement of the power spectral density in the energy range of the interplanetary magnetic field turbulence caused by the large scale irregularities generated due to the interaction of the extending high speed disturbances with the background solar wind. The very hard rigidity spectrum (from the starting moment) of the second Forbush effect is generally associated with the well established new structure of the energy range of the interplanetary magnetic field turbulence enriched by the already created large scale irregularities. The gradually softening of the rigidity spectrum during the recovery phase of the second Forbush effect confirms that the disturbed interplanetary magnetic field turbulence step by step returns to the initial state.  相似文献   

3.
宇宙线强度变化与磁扰K类型   总被引:3,自引:1,他引:2  
本文把1966—1983年期间发生的679个地磁暴进行了分类,利用统计方法分析了各类磁暴发生前后宇宙线强度的变化特征.突发急始脉冲发生后,宇宙线强度没有出现显著的变化;缓始型暴发生后,宇宙线强度出现Forbush下降,但下降幅度很小;急始型暴发生后,宇宙线强度出现十分明显的Forbush下降.当把急始型暴按K指数大小和持续时间分为5种类型,发现它们伴随的宇宙线Forbush下降是不一样的,其下降幅度随磁暴的增强而加大,下降的速率随磁暴的增强而加快,扰动的持续时间随磁暴的减弱而增加.   相似文献   

4.
Systematic recording of the cosmic radiation commenced in Hobart in 1946 and at Mawson in Antarctica in 1955, making these two of the longest running cosmic ray observatories in the world. For the IGY, observations were also made at a sub-Antarctic island and near the equator, and an airborne survey of the nucleonic component was made from Geomagnetic Latitude −60°, south of Australia, to Japan and back. At Hobart there were neutron monitors, vertical and inclined muon telescopes, an ionization chamber, and two muon telescopes at ∼40 m of water equivalent underground. The research based on these and other observations determined the energy dependence of the Forbush and 11-year variations and concentrated, in particular, on understanding the anisotropic nature of galactic cosmic rays up to 150 GeV; the anisotropies in the onset phase of Forbush decreases; and the anisotropies in solar cosmic ray events. An investigation was initiated to calculate the trajectories and cutoff rigidities of cosmic rays in a high order simulation of the geomagnetic field. This was completed in 1959–60.  相似文献   

5.
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.  相似文献   

6.
We study the Forbush decrease of the galactic cosmic ray intensity observed in 9–25 September 2005 using the experimental data and a newly developed time-dependent three dimensional modeling. We analyze neutron monitors and muon telescopes, and the interplanetary magnetic field data. We demonstrate a clear relationship between the rigidity (R) spectrum exponent (γ) of the Forbush decrease and the exponent (ν) of the power spectral density of the components of the interplanetary magnetic field in the frequency range of ∼ 10−6–10 −5 Hz. We confirm that an inclusion of the time-dependent changes of the exponent ν makes the newly developed nonstationary three dimensional model of the Forbush decrease compatible with the experimental data. Also, we show that the changes of the rigidity spectrum exponent γ does not depend on the level of convection of the galactic cosmic rays stream by solar wind; depending on the changes of the exponent ν, i.e. on the state of the turbulence of the interplanetary magnetic field.  相似文献   

7.
We report Forbush decreases (FD) in cosmic ray intensity from January 1996 to December 2008, the whole Solar Cycle 23rd. Statistical analysis is done for only 152 events for which associated solar flare position, flare classes, and Coronal Mass Ejections (CME) speed are given. We applied FD parameters taken from the Forbush Effects and Interplanetary Disturbances databases maintained by the Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation (IZMIRAN), obtained by processing the data of the worldwide neutron monitor network using the global survey method (GSM) (A. Belov et al., 2018). For the said number of events, we examine their effect on interplanetary space and the decrease of the galactic cosmic rays (GCR) near Earth. We found that the 11–20° latitudinal belt shows more FD- associated flare events than the other latitudinal belts, and on this belt, the Southern hemisphere is more active. The results reveal that FDs and solar flares are well correlated. Statistical analysis is carried out for the magnitude of the CR decrease with solar and geomagnetic parameters.  相似文献   

8.
Observed galactic cosmic ray intensity can be subjected to a transient decrease. These so-called Forbush decreases are driven by coronal mass ejection induced shockwaves in the heliosphere. By combining in situ measurements by space borne instruments with ground-based cosmic ray observations, we investigate the relationship between solar energetic particle flux, various solar activity indices, and intensity measurements of cosmic rays during such an event. We present cross-correlation study done using proton flux data from the SOHO/ERNE instrument, as well as data collected during some of the strongest Forbush decreases over the last two completed solar cycles by the network of neutron monitor detectors and different solar observatories. We have demonstrated connection between the shape of solar energetic particles fluence spectra and selected coronal mass ejection and Forbush decrease parameters, indicating that power exponents used to model these fluence spectra could be valuable new parameters in similar analysis of mentioned phenomena. They appear to be better predictor variables of Forbush decrease magnitude in interplanetary magnetic field than coronal mass ejection velocities.  相似文献   

9.
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.  相似文献   

10.
强磁场扰动对宇宙线调制的统计研究   总被引:5,自引:2,他引:3  
对1978─1982太阳活动高年时发生的激波、强磁场扰动及激波与强磁场扰动共存这三类事件引起的宇宙线变化进行了统计研究,得到如下结果:(1)激波与强磁场扰动共存时引起的宇宙线强度下降最为显着;只有激波或强磁场扰动时,宇宙线的强度变化相对较小;(2)标志速度间断的激波是产生宇宙线Forbush下降的重要因素;(3)速度间断在强磁场扰动对宇宙线的调制中可能起一个触发的作用。   相似文献   

11.
Applicability of our present setup for solar modulation studies in a shallow underground laboratory is tested on four prominent examples of Forbush decrease during solar cycle 24. Forbush decreases are of interest in space weather application and study of energy-dependent solar modulation, and they have been studied extensively. The characteristics of these events, as recorded by various neutron monitors and our detectors, were compared, and rigidity spectrum was found. Linear regression was performed to find power indices that correspond to each event. As expected, a steeper spectrum during more intense extreme solar events with strong X-flares shows a greater modulation of galactic cosmic rays. Presented comparative analysis illustrates the applicability of our setup for studies of solar modulation in the energy region exceeding the sensitivity of neutron monitors.  相似文献   

12.
The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude and longitude of locations on the earth. The latitude effect relates to the geomagnetic shield; the longitude effect relates to local time. For anisotropic solar cosmic ray events the maximum particle flux is always along the interplanetary magnetic field direction, sometimes called the Archimedean spiral path from the sun to the earth. During anisotropic solar cosmic ray event, the locations on the earth viewing "sunward" into the interplanetary magnetic field direction will observe the largest flux (when adjustments are made for the magnetic latitude effect). To relate this phenomena to aircraft routes, for anisotropic solar cosmic ray events that occur during "normal quiescent" conditions, the maximum solar cosmic ray flux (and corresponding solar particle radiation dose) will be observed in the dawn quadrant, ideally at about 06 hours local time.  相似文献   

13.
In computer codes used to estimate the aircrew radiation exposure from galactic cosmic radiation, a quiet sun model is usually assumed. A revised computer code (PCAIRE ver. 8.0f) is used to calculate the impact of noisy sun conditions on aircrew radiation exposure. The revised code incorporates the effect of solar storm activity, which can perturb the geomagnetic field lines, altering cutoff rigidities and hence the shielding capability of the Earth’s magnetic field. The effect of typical solar storm conditions on aircrew radiation exposure is shown to be minimal justifying the usual assumptions.  相似文献   

14.
A very strong interplanetary and magnetospheric disturbance observed on 7–13 November 2004 can be regarded as one of the strongest events during the entire period of space observations. In this paper we report on the studies of cosmic ray cutoff rigidity variations during 7–13 November 2004 showing how storm conditions can affect the direct cosmic ray access to the inner magnetosphere. Effective cutoff rigidities have been calculated for selected points on the ground by tracing trajectories of cosmic ray particles through the magnetospheric magnetic field of the “storm-oriented” Tsyganenko 2003 model. Cutoff rigidity variations have also been determined by the spectrographic global survey method on the basis of experimental data of the neutron monitor network. Relations between the calculated and experimental cutoff rigidities and the geomagnetic Dst-index and interplanetary parameters have been investigated. Correlation coefficients between the cutoff rigidities obtained by the trajectory tracing method and the spectrographic global survey method have been found to be in the limits 0.76–0.89 for all stations except the low-latitude station Tokyo (0.35). The most pronounced correlation has been revealed between the cutoff rigidities that exhibited a very large variation of ∼1–1.5 GV during the magnetic storm and the Dst index.  相似文献   

15.
In the present work the cosmic ray intensity data recorded with ground-based neutron monitor at Deep River has investigated taking into account the associated interplanetary magnetic field and solar wind plasma data during 1981—1994.A large number of days having abnormally high/low amplitudes for successive number of five or more days as compared to annual average amplitude of diurnal anisotropy have been taken as high/low amplitude anisotropic wave train events(HAE/LAE).The amplitude of the diurnal anisotropy of these events is found to increase on the days of magnetic cloud as compared to the days prior to the event and it found to decrease during the later period of the event as the cloud passes the Earth.The High-Speed Solar Wind Streams(HSSWS)do not play any significant role in causing these types of events. The interplanetary disturbances(magnetic clouds)are also effective in producing cosmic ray decreases.Hαsolar flares have a good positive correlation with both amplitude and direction of the anisotropy for HAEs, whereas PMSs have a good positive correlation with both amplitude and direction of the anisotropy for LAEs. The source responsible for these unusual anisotropic wave trains in CR has been proposed.  相似文献   

16.
We study two intense Forbush decreases that occurred during two adjacent SOLTIP (Solar connection of Transient Interplanetary Processes) intervals; namely SOLTIP 1 (22–27 March 1991) and SOLTIP 2 (1–17 June 1991); galactic cosmic ray intensity at the depth of the second Forbush decrease was the lowest ever recorded since continuous monitoring by Climax neutron monitor began in 1951 (58% below the solar minimum value of 1954), indicating extreme conditions in the heliosphere that prevented galactic cosmic rays from reaching the Earth. These decreases were seen propagating in outer heliosphere by the deep space missions Voyagers 1, 2 and Pioneer 10, 11, with suitable time delays. We analyze hourly, pressure corrected, neutron monitor data from the global sites in both hemispheres, and muon telescopes located underground; they respond to 10–300 GV range of the galactic cosmic ray spectrum. This circumstance provides us an ideal opportunity to study the rigidity dependence of the amplitudes of the two Forbush decreases. In both cases the amplitude is found to be a power law in rigidity, with negative exponents.  相似文献   

17.
The Forbush decreases of cosmic ray flux occur prevailingly together with geomagnetic storms, because these phenomena have a similar origin in solar/interplanetary processes. To study the effects of large Forbush decreases on total ozone at middle latitudes, we use the TOMS total ozone data along latitudinal circles 40°N and 50°N. The effects of Forbush decreases are found to occur or to be non-measurable under the same conditions as those of geomagnetic storms: certain effect occurs only at 50°N (not 40°N), in winter, under conditions of high solar activity and the east phase of the QBO. However, the effects of the analyzed Forbush decreases are weaker than the effects of strong geomagnetic storms.  相似文献   

18.
本文从银河宇宙线的太阳调制方程出发,认为激波对宇宙线的影响是由一扰动区产生的。在此扰动区中太阳风速度增加,扩散系数下降。由此进行了数值模拟,模拟结果表明:扩散系数的下降在产生福布什下降时要比太阳风速度的增加更为有效;福布什下降在近日球层内向外传播时,其幅度随径向距离的增大而衰减;两个无相互作用的激波同时存在时所产生的福布什下降为每个激波单独存在时的福布什下降的简单线性迭加。   相似文献   

19.
The allowed cosmic radiation flux accessible to an earth-orbiting spacecraft is a complex function of the satellite position and the geomagnetic cutoff characteristics at each zenith and azimuth angle at each position. We have determined cosmic ray exposure factors for the galactic cosmic ray spectrum for typical shuttle altitudes and inclinations up to 50 degrees. We have utilized d world grid of trajectory-derived cutoff rigidity calculations at 400 km altitude to determine geomagnetic transmission functions that permit a simple and direct calculation of the allowed cosmic ray spectrum to a 400 km satellite orbit. If the interplanetary cosmic ray spectrum is multiplied by the orbit-averaged geomagnetic transmission function the result is the allowed cosmic ray spectrum at the spacecraft.  相似文献   

20.
High-energy solar particles, produced in association with solar flares and coronal mass ejections, occasionally bombard the earth's atmosphere. resulting in radiation intensities additional to the background cosmic radiation. Access of these particles to the earth's vicinity during times of geomagnetic disturbances are not adequately described by using static geomagnetic field models. These solar fluxes are also often distributed non uniformly in space, so that fluxes measured by satellites obtained at great distances from the earth and which sample large volumes of space around the earth cannot be used to predict fluxes locally at the earth's surface. We present here a method which uses the ground-level neutron monitor counting rates as adjoint sources of the flux in the atmosphere immediately above them to obtain solar-particle effective dose rates as a function of position over the earth's surface. We have applied this approach to the large September 29-30, 1989 ground-level event (designated GLE 42) to obtain the magnitude and distribution of the solar-particle effective dose rate from an atypically large event. The results of these calculations clearly show the effect of the softer particle spectra associated with solar particle events, as compared with galactic cosmic rays, results in a greater sensitivity to the geomagnetic field, and, unlike cosmic rays, the near-absence of a "knee" near 60 degrees geomagnetic latitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号