首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
At present there is no doubt that the local interstellar medium (LISM) is mainly partially ionized hydrogen gas moving with a supersonic flow relative to the solar system. The bulk velocity of this flow is approximately equal ~26 km/s. Although the interaction of the solar wind with the charged component (below plasma component) of the LISM can be described in the framework of hydrodynamic approach, the interaction of H atoms with the plasma component can be correctly described only in the framework of kinetic theory because the mean free path of H atoms in the main process of the resonance charge exchange is comparable with a characteristic length of the problem considered. Results of self-consistent, kinetic-hydrodynamic models are considered in this review paper. First, such the model was constructed by Baranov and Malama (J. Geophys. Res. 98(A9):15,157–15,163, 1993). Up to now it is mainly developed by Moscow group taking into account new experimental data obtained onboard spacecraft studying outer regions of the solar system (Voyager 1 and 2, Pioneer 10 and 11, Hubble Space Telescope, Ulysses, SOHO and so on). Predictions and interpretations of experimental data obtained on the basis of these models are presented. Kinetic models for describing H atom motion were later suggested by Fahr et al. (Astron. Astrophys 298:587–600, 1995) and Lipatov et al. (J. Geophys. Res. 103(A9):20,631–20,642, 1998). However they were not self-consistent and did not incorporate sources to the plasma component. A self-consistent kinetic-hydrodynamic model suggested by Heerikhuisen et al. (J. Geophys. Res. 111:A06110, 2006, Astrophys. J. 655:L53–L56, 2007) was not tested on the results by Baranov and Malama (J. Geophys. Res. 111:A06110, 1993) although it was suggested much later. Besides authors did not describe in details their Monte Carlo method for a solution of the H atom Boltzmann equation and did not inform about an accuracy of this method. Therefore the results of Heerikhuisen et al. (J. Geophys. Res. 111:A06110, 2006) are in open to question and will not be considered in this review paper. That is why below we will mainly consider a progress of the Moscow group on heliospheric modelling endeavours in the kinetic-hydrodynamic approach. Criticism of the models that treat interstellar hydrogen in the heliosphere as several fluids is given. It is shown that the multi-fluid models give rise to unreal results especially for distributions of neutral component parameters. Magnetohydrodynamic (MHD) modelling of the solar wind interaction with the LISM gas is also reviewed.  相似文献   

2.
This paper introduces and describes the radio and plasma wave investigation on the STEREO Mission: STEREO/WAVES or S/WAVES. The S/WAVES instrument includes a suite of state-of-the-art experiments that provide comprehensive measurements of the three components of the fluctuating electric field from a fraction of a hertz up to 16 MHz, plus a single frequency channel near 30 MHz. The instrument has a direction finding or goniopolarimetry capability to perform 3D localization and tracking of radio emissions associated with streams of energetic electrons and shock waves associated with Coronal Mass Ejections (CMEs). The scientific objectives include: (i) remote observation and measurement of radio waves excited by energetic particles throughout the 3D heliosphere that are associated with the CMEs and with solar flare phenomena, and (ii) in-situ measurement of the properties of CMEs and interplanetary shocks, such as their electron density and temperature and the associated plasma waves near 1 Astronomical Unit (AU). Two companion papers provide details on specific aspects of the S/WAVES instrument, namely the electric antenna system (Bale et al., Space Sci. Rev., 2007) and the direction finding technique (Cecconi et al., Space Sci. Rev., 2007).  相似文献   

3.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   

4.
Heliospheric energetic neutral atoms (ENAs) that will be measured by the Interstellar Boundary Explorer (IBEX) originate from the heliosheath. The heliosheath is formed as a result of the interaction of the solar wind (SW) with the circum-heliospheric interstellar medium (CHISM). The expected fluxes of ENAs are strongly dependent on the nature of this interaction. In turn, the interaction of the solar wind with the local interstellar cloud has a complex and multi-component nature. Detailed theoretical modeling of the interaction between the SW and the local interstellar medium is required to understand the physics of the heliosheath and to predict and explain the heliospheric ENAs. This paper summarizes current state-of-art kinetic-gasdynamic models of the SW/CHISM interaction. We shall restrict our discussion to the kinetic-gasdynamic and kinetic-magnetohydrodynamic (MHD) models developed by the Moscow group. This paper summarizes briefly the main results of the first self-consistent, two-component, kinetic-gasdynamic model by Baranov and Malama (J. Geophys. Res. 98:15157–15163, 1993), presents new results obtained from the 3D kinetic-MHD model by Izmodenov et al. (Astron. Astrophys. 437:L35–L38, 2005a), describes the basic formulation and results of the model by Malama et al. (Astron. Astrophys. 445:693–701, 2006) as well as reports current developments in the model. This self-consistent model considers pickup protons as a separate non-equilibrium component. Then we discuss a stochastic acceleration model for pickup protons in the supersonic solar wind and in the heliosheath. We also present the expected heliospheric ENA fluxes obtained in the framework of the models.  相似文献   

5.
The Lunar Crater Observation Sensing Satellite (LCROSS), an accompanying payload to the Lunar Reconnaissance Orbiter (LRO) mission (Vondrak et al. 2010), was launched with LRO on 18 June 2009. The principle goal of the LCROSS mission was to shed light on the nature of the materials contained within permanently shadowed lunar craters. These Permanently Shadowed Regions (PSRs) are of considerable interest due to the very low temperatures, <120?K, found within the shadowed regions (Paige et al. 2010a, 2010b) and the possibility of accumulated, cold-trapped volatiles contained therein. Two previous lunar missions, Clementine and Lunar Prospector, have made measurements that indicate the possibility of water ice associated with these PSRs. LCROSS used the spent LRO Earth-lunar transfer rocket stage, an Atlas V Centaur upper stage, as a kinetic impactor, impacting a PSR on 9 October 2009 and throwing ejecta up into sunlight where it was observed. This impactor was guided to its target by a Shepherding Spacecraft (SSC) which also contained a number of instruments that observed the lunar impact. A?campaign of terrestrial ground, Earth orbital and lunar orbital assets were also coordinated to observe the impact and subsequent crater and ejecta blanket. After observing the Centaur impact, the SSC became an impactor itself. The principal measurement goals of the LCROSS mission were to establish the form and concentration of the hydrogen-bearing material observed by Lunar Prospector, characterization of regolith within a PSR (including composition and physical properties), and the characterization of the perturbation to the lunar exosphere caused by the impact itself.  相似文献   

6.
IBEX provides the observations needed for detailed modeling and in-depth understanding of the interstellar interaction (McComas et al. in Physics of the Outer Heliosphere, Third Annual IGPP Conference, pp. 162–181, 2004; Space Sci. Rev., 2009a, this issue). From mission design to launch and acquisition, this goal drove all flight system development. This paper describes the management, design, testing and integration of IBEX’s flight system, which successfully launched from Kwajalein Atoll on October 19, 2008. The payload is supported by a simple, Sun-pointing, spin-stabilized spacecraft with no deployables. The spacecraft bus consists of the following subsystems: attitude control, command and data handling, electrical power, hydrazine propulsion, RF, thermal, and structures. A novel 3-step orbit approach was employed to put IBEX in its highly elliptical, 8-day final orbit using a Solid Rocket Motor, which provided large delta-V after IBEX separated from the Pegasus launch vehicle; an adapter cone, which interfaced between the SRM and Pegasus; Motorized Lightbands, which performed separation from the Pegasus, ejection of the adapter cone, and separation of the spent SRM from the spacecraft; a ShockRing isolation system to lower expected launch loads; and the onboard Hydrazine Propulsion System. After orbit raising, IBEX transitioned from commissioning to nominal operations and science acquisition. At every phase of development, the Systems Engineering and Mission Assurance teams supervised the design, testing and integration of all IBEX flight elements.  相似文献   

7.
Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood.  相似文献   

8.
We describe the response of the Solar Wind Around Pluto (SWAP) instrument (McComas et al. in Space Sci. Rev. 140:261, 2008) to 1–40 amu ions in order to assess whether it can be used to determine plasma composition. Our goal is to enhance the scientific return on the SWAP plasma measurements obtained during the New Horizons traversal down Jupiter’s magnetotail in 2007. We present calibration data for the SWAP flight instrument and another largely flight-like SWAP sensor, dubbed “SWAP-II”. SWAP’s mass-dependent response was characterized by analyzing the count ratios from its two channel electron multipliers (CEMs). We observe significant differences in the instrument response between light (mass ≤ He) and heavy (mass > He) ions, especially for energies below ~4 keV. We attribute these differences to the mass-dependent electron emission yield from SWAP’s ultra-thin (~1 μg/cm2) carbon foil. Using these results, we develop a plasma composition analysis technique to statistically distinguish between light and heavy plasma ions measured by the instrument.  相似文献   

9.
The Lunar Orbiter Laser Altimeter (LOLA) is an instrument on the payload of NASA’s Lunar Reconnaissance Orbiter spacecraft (LRO) (Chin et al., in Space Sci. Rev. 129:391–419, 2007). The instrument is designed to measure the shape of the Moon by measuring precisely the range from the spacecraft to the lunar surface, and incorporating precision orbit determination of LRO, referencing surface ranges to the Moon’s center of mass. LOLA has 5 beams and operates at 28 Hz, with a nominal accuracy of 10 cm. Its primary objective is to produce a global geodetic grid for the Moon to which all other observations can be precisely referenced.  相似文献   

10.
We review our recent results of Alfvén wave-driven winds. First, we present the result of self-consistent 1D MHD simulations for solar winds from the photosphere to interplanetary region. Here, we emphasize the importance of the reflection of Alfvén waves in the density stratified corona and solar winds. We also introduce the recent Hinode observation that might detect the reflection signature of transverse (Alfvénic) waves by Fujimura and Tsuneta (Astrophys. J. 702:1443, 2009). Then, we show the results of Alfvén wave-driven winds from red giant stars. As a star evolves to the red giant branch, the properties of stellar winds drastically change from steady coronal winds to intermittent chromospheric winds. We also discuss how the stellar evolution affects the wave reflection in the stellar atmosphere and similarities and differences of accretion disk winds by MHD turbulence.  相似文献   

11.
As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237–244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189–214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.  相似文献   

12.
Plasmaspheric density structures have been studied since the discovery of the plasmasphere in the late 1950s. But the advent of the Cluster and Image missions in 2000 has added substantially to our knowledge of density structures, thanks to the new capabilities of those missions: global imaging with Image and four-point in situ measurements with Cluster. The study of plasma sources and losses has given new results on refilling rates and erosion processes. Two-dimensional density images of the plasmasphere have been obtained. The spatial gradient of plasmaspheric density has been computed. The ratios between H+, He+ and O+ have been deduced from different ion measurements. Plasmaspheric plumes have been studied in detail with new tools, which provide information on their morphology, dynamics and occurrence. Density structures at smaller scales have been revealed with those missions, structures that could not be clearly distinguished before the global images from Image and the four-point measurements by Cluster became available. New terms have been given to these structures, like “shoulders”, “channels”, “fingers” and “crenulations”. This paper reviews the most relevant new results about the plasmaspheric plasma obtained since the start of the Cluster and Image missions.  相似文献   

13.
The electric field and magnetic field are basic quantities in the plasmasphere measured since the 1960s. In this review, we first recall conventional wisdom and remaining problems from ground-based whistler measurements. Then we show scientific results from Cluster and Image, which are specifically made possible by newly introduced features on these spacecraft, as follows. 1. In situ electric field measurements using artificial electron beams are successfully used to identify electric fields originating from various sources. 2. Global electric fields are derived from sequences of plasmaspheric images, revealing how the inner magnetospheric electric field responds to the southward interplanetary magnetic fields and storms/substorms. 3. Understanding of sub-auroral polarization stream (SAPS) or sub-auroral ion drifts (SAID) are advanced through analysis of a combination of magnetospheric and ionospheric measurements from Cluster, Image, and DMSP. 4. Data from multiple spacecraft have been used to estimate magnetic gradients for the first time.  相似文献   

14.
This paper highlights significant advances in plasmaspheric wave research with Cluster and Image observations. This leap forward was made possible thanks to the new observational capabilities of these space missions. On one hand, the multipoint view of the four Cluster satellites, a unique capability, has enabled the estimation of wave characteristics impossible to derive from single spacecraft measurements. On the other hand, the Image experiments have enabled to relate large-scale plasmaspheric density structures with wave observations and provide radio soundings of the plasmasphere with unprecedented details. After a brief introduction on Cluster and Image wave instrumentation, a series of sections, each dedicated to a specific type of plasmaspheric wave, put into context the recent advances obtained by these two revolutionary missions.  相似文献   

15.
A number of previously unclassified multiplets of Fexiv, xiii, xii, and xi produced by transitions of the type 3s 23p n -3s3p n+1 are identified in the XUV spectrum of the Sun. The iron lines account for most of the previously unidentified strong lines between 330 and 370 Å. Solar observations of especial value for the investigation of the 300–400 Å region were the slitless spectroheliograms of September 22, 1968 (Purcell and Tousey, 1969) and November 4, 1969 (Tousey, 1971) — on which the image of a flare was recorded. Other solar identifications in the same spectral region include the resonance lines of Nixvii and Nixviii, and one 3p-3d multiplet of Fexiii. The solar blend at 417 Å involving the Fexv inter-combination line and Sxiv is resolved.  相似文献   

16.
Ground Level Enhancement (GLE) events represent the most energetic class of solar energetic particle (SEP) events, requiring acceleration processes to boost ?1?GeV ions in order to produce showers of secondary particles in the Earth’s atmosphere with sufficient intensity to be detected by ground-level neutron monitors, above the background of cosmic rays. Although the association of GLE events with both solar flares and coronal mass ejections (CMEs) is undisputed, the question arises about the location of the responsible acceleration site: coronal flare reconnection sites, coronal CME shocks, or interplanetary shocks? To investigate the first possibility we explore the timing of GLE events with respect to hard X-ray production in solar flares, considering the height and magnetic topology of flares, the role of extended acceleration, and particle trapping. We find that 50% (6 out of 12) of recent (non-occulted) GLE events are accelerated during the impulsive flare phase, while the remaining half are accelerated significantly later. It appears that the prompt GLE component, which is observed in virtually all GLE events according to a recent study by Vashenyuk et al. (Astrophys. Space Sci. Trans. 7(4):459–463, 2011), is consistent with a flare origin in the lower corona, while the delayed gradual GLE component can be produced by both, either by extended acceleration and/or trapping in flare sites, or by particles accelerated in coronal and interplanetary shocks.  相似文献   

17.
Ground-based instruments and a number of space missions have contributed to our knowledge of the plasmasphere since its discovery half a century ago, but it is fair to say that many questions have remained unanswered. Recently, NASA’s Image and ESA’s Cluster probes have introduced new observational concepts, thereby providing a non-local view of the plasmasphere. Image carried an extreme ultraviolet imager producing global pictures of the plasmasphere. Its instrumentation also included a radio sounder for remotely sensing the spacecraft environment. The Cluster mission provides observations at four nearby points as the four-spacecraft configuration crosses the outer plasmasphere on every perigee pass, thereby giving an idea of field and plasma gradients and of electric current density. This paper starts with a historical overview of classical single-spacecraft data interpretation, discusses the non-local nature of the Image and Cluster measurements, and emphasizes the importance of the new data interpretation tools that have been developed to extract non-local information from these observations. The paper reviews these innovative techniques and highlights some of them to give an idea of the flavor of these methods. In doing so, it is shown how the non-local perspective opens new avenues for plasmaspheric research.  相似文献   

18.
The Dawn spectrometer (VIR) is a hyperspectral spectrometer with imaging capability. The design fully accomplishes Dawn’s scientific and measurement objectives. Determination of the mineral composition of surface materials in their geologic context is a primary Dawn objective. The nature of the solid compounds of the asteroid (silicates, oxides, salts, organics and ices) can be identified by visual and infrared spectroscopy using high spatial resolution imaging to map the heterogeneity of asteroid surfaces and high spectral resolution spectroscopy to determine the composition unambiguously. The VIR Spectrometer—covering the range from the near UV (0.25 μm) to the near IR (5.0 μm) and having moderate to high spectral resolution and imaging capabilities—is the appropriate instrument for the determination of the asteroid global and local properties. VIR combines two data channels in one compact instrument. The visible channel covers 0.25–1.05 μm and the infrared channel covers 1–5.0 μm. VIR is inherited from the VIRTIS mapping spectrometer (Coradini et al. in Planet. Space Sci. 46:1291–1304, 1998; Reininger et al. in Proc. SPIE 2819:66–77, 1996) on board the ESA Rosetta mission. It will be operated for more than 2 years and spend more than 10 years in space.  相似文献   

19.
We review three distance measurement techniques beyond the local universe: (1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and (3) HI intensity mapping. We describe the principles and theory behind each method, the ingredients needed for measuring such distances, the current observational results, and future prospects. Time-delays from strongly lensed quasars currently provide constraints on \(H_{0}\) with \(<4\%\) uncertainty, and with \(1\%\) within reach from ongoing surveys and efforts. Recent exciting discoveries of strongly lensed supernovae hold great promise for time-delay cosmography. BAO features have been detected in redshift surveys up to \(z\lesssim0.8\) with galaxies and \(z\sim2\) with Ly-\(\alpha\) forest, providing precise distance measurements and \(H_{0}\) with \(<2\%\) uncertainty in flat \(\Lambda\)CDM. Future BAO surveys will probe the distance scale with percent-level precision. HI intensity mapping has great potential to map BAO distances at \(z\sim0.8\) and beyond with precisions of a few percent. The next years ahead will be exciting as various cosmological probes reach \(1\%\) uncertainty in determining \(H_{0}\), to assess the current tension in \(H_{0}\) measurements that could indicate new physics.  相似文献   

20.
The properties of the eclipsing binaries Algol, Beta Lyrae, and W Serpentis are discussed and new results are presented. The physical properties of the components of Algol are now well determined. High resolution spectroscopy of the H-alpha feature by Richards et al. and by Gillet et al. and spectroscopy of the ultraviolet resonance lines with the International Ultraviolet Explorer satellite reveal hot gas around the BBV primary. Gas flows also have been detected apparently originating from the low mass, cooler secondary component and flowing toward the hotter star through the Lagrangian L1 point. Analysis of 6 years of multi-bandpass photoelectric photometry of Beta Lyrae indicates that systematic changes in light curves occur with a characteristic period of -275 ± 25 days. These changes may arise from pulsations of the B8II star or from changes in the geometry of the disk component. Hitherto unpublished u, v, b, y, and H-alpha index light curves of W Ser are presented and discussed. W Ser is a very complex binary system that undergoes complicated, large changes in its light curves. The physical properties of W Ser are only poorly known, but it probably contains one component at its Roche surface, rapidly transfering matter to a component which is embedded in a thick, opaque disk. In several respects, W Ser resembles an upscale version of a cataclysmic variable binary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号