首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Reported heliospheric current-sheet displacements from the equatorial plane have been found to be in agreement with north-south asymmetries of the solar magnetic field. Mean heliospheric sector width estimations in the period 1947–1977 have shown that the heliospheric current sheet demonstrates an asymmetric placement with respect to the solar equator. This asymmetry is very prominent in the epochs of the solar cycle minima while it almost disappears in the epochs of maxima. At the same time, the sums of the maxima values of the sunspot magnetic field intensity showed in the epochs of minimum a characteristic asymmetry which implies an essential conjunction among the heliospheric current sheet, the solar cycle and the solar magnetic field. The main conclusion which could be derived of these observations is that the heliospheric current sheet has its origin on the solar surface while its location with respect to the solar equator appears to be affected by the variability of the lower layers of the solar interior.  相似文献   

2.
Annual means of measured and reconstructed solar, heliospheric, and magnetospheric parameters are used to infer solar activity signatures at the Hale and Gleissberg cycles timescales. Available open solar flux, modulation strength, cosmic ray flux, total solar irradiance data, reconstructed back to 1700, solar wind parameters (speed and density) and the magnitude of the heliospheric magnetic field at 1 AU, reconstructed back to 1870, as well as the time series of geomagnetic activity indices (aa, IDV, IHV), going back to 1870, have been considered. Simple filtering procedures (successive 11-, 22-, and 88-year running averages and differences between them) and scaling by the standard deviation from the average value for the common interval covered by the data show that the long-discussed variation in the 20th century (a pronounced increase since ∼1900, followed by a depression in the ‘60s and a new, slower, increase) seen in the 11-year averages of parameters such as geomagnetic activity indices and reconstructed heliospheric magnetic field strength, solar wind speed, open solar flux, is a result of the superposition in data of solar activity signatures at Hale and Gleissberg cycles timescales. The Hale and Gleissberg signals were characterized and similarities and differences in the temporal behavior of the analyzed parameters at these timescales are discussed. The similarities in the studied parameters point to a common pacing source, the solar dynamo.  相似文献   

3.
The SOHO/MDI data provide the uniform time series of the synoptic magnetic maps which cover the period of the cycle 23 and the beginning of the cycle 24. It is very interesting period because of the long and deep solar minimum between the cycles 23 and 24. Synoptic structure of the solar magnetic field shows variability during solar cycles. It is known that the magnetic activity contributes to the solar irradiance. The axisymmetrical distribution of the magnetic flux (Fig. 3c) is closely associated with the ‘butterfly’ diagram in the EUV emission (Benevolenskaya et al., 2001). And, also, the magnetic field (B) shows the non-uniform distributions of the solar activity with longitude, so-called ‘active zones’, and ‘coronal holes’ in the mid-latitude. Polar coronal holes are forming after the solar maxima and they persist during the solar minima. SOHO/EIT data in the emission of Fe XII (195 Å) could be a proxy for the coronal holes tracking. The active longitudinal zones or active longitude exist due to the reappearance of the activity and it is clearly seen in the synoptic structure of the solar cycle. On the descending branch of the solar cycle 23 active zones are less pronounced comparing with previous cycles 20, 21 and 22. Moreover, the weak polar magnetic field precedes the long and deep solar minimum. In this paper we have discussed the development of solar cycles 23 and 24 in details.  相似文献   

4.
The high-speed plasma streams in the solar wind are investigated during the solar cycles nos. 20–22 (1964–1996), separately on the two types of streams according to their solar origin: the HSPS produced by coronal holes (co-rotating) and the flare-generated, in keeping with the classification made in different catalogues. The analysis is performed taking into account the following high-speed stream parameters: the durations (in days), the maximum velocities, the velocity gradients and, the importance of the streams. The time variation of these parameters and the high-speed plasma streams occurrence rate show an 11-year periodicity with some differences between the solar cycles considered. A detailed analysis of the high-speed stream 11-year cycles is made by comparison with the “standard” cycles of the sunspot relative number (Wolf number). The different behaviour of the high-speed stream parameters between even and odd solar cycles could be due to the 22-year solar magnetic cycle. The increased activity of the high-speed plasma streams on the descendant phases of the cycles, regardless of their solar sources, proves the existence of some special local conditions of the solar plasma and the magnetic field on a large scale that allow the ejection of the high energy plasma streams. This fact has led us to the analysis the stream parameters during the different phases of the solar cycles (minimum, ascendant, maximum and, descendant) as well as during the polar magnetic field reversal intervals. The differences between the phases considered are pointed out. The solar cycles 20 and 22 reveal very similar dynamics of the flare-generated and also co-rotating stream parameters during the maximum, descendant and reversal intervals. This fact could be due to their position in a Hale Cycle (the first component of the 22-year solar magnetic cycle). The 21st solar cycle dominance of all co-rotating stream parameters against the 20th and 22nd solar cycle ones, during almost all phases, could be due to the same structure of a Hale Cycle – solar cycle 21 is the second component in a 22-year SC. During the reversal intervals, all high-speed stream parameters have comparable values with the ones of the maximum phases of the cycles even if this interval contains a small part of the descendant branch (solar cycles 20 and 22).  相似文献   

5.
The long-term (solar cycle) changes in the Sun and how it affects the ionospheric F-region observed at São José dos Campos (23.2° S, 45.9° W), Brazil, a location under the southern crest of the equatorial ionospheric anomaly, have been investigated in this paper. The dependence of the F-region peak electron density (foF2) on solar activity during the descending phase of the 23rd solar cycle for the periods of high, medium, and low solar activity has been studied. The ionospheric F-region peak electron densities observed during high and medium solar activity show seasonal variations with maxima close to the equinox periods, whereas during the low solar activity the maxima during the equinox periods is absent. However, during the low solar activity only change observed is a large decrease from summer to winter months. We have further investigated changes in the different ionospheric F-region parameters (minimum virtual height of the F-region (h′F), virtual height at 0.834foF2 (hpF2), and foF2) during summer to winter months in low solar activity periods, 2006–2007 and 2007–2008. Large changes in the two ionospheric parameters (hpF2 and foF2) are observed during summer to winter months in the two low solar activity periods investigated.  相似文献   

6.
The analysis of the behavior of the critical frequency foF2 during the 24th solar activity cycle (Danilov and Konstantinova, 2020a, c) is prolonged for two more months and the nighttime hours. In addition to the Rz and Ly-α indices used in the aforementioned papers for correction of the F10.7 index during the 24th cycle, the commonly used Mg II index is added. The results confirm the previous conclusions on the existence of the “vague” period with chaotic behavior of foF2 and the recovery of the negative trend in foF2 after 2008–2010. A comparison of the F10.7 index with three other SA indices (Ly-α, Rz, and Mg II) for the 22nd, 23rd, and 24th SA cycles is performed. It is shown that the relationship between F10.7 and other indices is close in the 22nd and 23rd cycles but differs from that in the 24th cycle. The corrected values of F10.7 in the 24th cycle are proposed for analysis of ionospheric trends during that cycle.  相似文献   

7.
Three major hypotheses have been proposed to explain the well-known semiannual variation of geomagnetic activity, maxima at equinoxes and minima at solstices. This study examined whether the seasonal variation of equinoctial geomagnetic activity is different in periods of opposite solar magnetic polarity in order to understand the contribution of the interplanetary magnetic field (IMF) in the Sun-Earth connection. Solar magnetic polarity is parallel to the Earth’s polarity in solar minimum years of odd/even cycles but antiparallel in solar minimum years of even/odd cycles. The daily mean of the aa, Aa indices during each solar minimum was compared for periods when the solar magnetic polarity remained in opposite dipole conditions. The Aa index values were used for each of the three years surrounding the solar minimum years of the 14 solar cycles recorded since 1856. The Aa index reflects seasonal variation in geomagnetic activity, which is greater at the equinoxes than at the solstices. The Aa index reveals solar magnetic polarity dependency in which the geomagnetic activity is stronger in the antiparallel solar magnetic polarity condition than in the parallel one. The periodicity in semiannual variation of the Aa index is stronger in the antiparallel solar polar magnetic field period than in the parallel period. Additionally, we suggest the favorable IMF condition of the semiannual variation in geomagnetic activity. The orientation of IMF toward the Sun in spring and away from the Sun in fall mainly contributes to the semiannual variation of geomagnetic activity in both antiparallel and parallel solar minimum years.  相似文献   

8.
On the dynamics of the heliosphere on intermediate and long time-scales   总被引:1,自引:0,他引:1  
A time-dependent, three-dimensional model of the dynamics of the heliosphere as a result of solar activity and a time-varying local interstellar medium is presented. The model is based on a recent version of the well known ZEUS code and employs parallel processing. It includes the solar and interstellar plasma components as well as neutral atoms, and contains the heliospheric magnetic field in a kinematic fashion. We study the dynamics of the heliosphere due to solar activity on periods of months to years up to the so-called Schwabe (11-year) cycle as well as due to time variations of the local interstellar medium, all of which have drawn increasing attention during recent years, as the significance of their direct or indirect effect on the Earth and its environment is under lively debate.  相似文献   

9.
A statistical study has been made of cosmic ray intensity, as observed by a neutron monitor, and of selected solar and geophysical parameters in a search for phenomena which may be associated with the reversal of the solar magnetic field. The results reported here utilized the Zurich sunspot number and the geomagnetic aa index. There is an intriguing, but not conclusive, result that shows a vast difference in the correlation of the neutron monitor intensity and the aa index between successive periods bounded by solar maxima. Between the 19th solar cycle maximum (March 1958) and the 20th solar cycle maximum (November 1968), and the 20th solar cycle maximum (November 1968) and the 21st solar cycle maximum (assumed to be December 1979 for this study) the correlations are ?0.86 and +0.28 respectively.  相似文献   

10.
The occurrence frequencies or fluxes of most of the solar phenomena show a 11-year cycle like that of sunspots. However, the average characteristics of these phenomena may not show a 11-year cycle. Among the terrestrial parameters, some related directly to the occurrence frequencies of solar phenomena (for example, ionospheric number densities related to solar EUV fluxes which show 11-year cycle like sunspots) show 11-year cycles, including the double-peak structures near sunspot maxima. Other terrestrial parameters related to average characteristics may not show 11-year sunspot cycles. For example, long-term geomagnetic activity (Ap or Dst indices) is related to the average interplanetary solar wind speed V and the total magnetic field B. The average values of V depend not on the occurrence frequency of ICMEs and/or CIRs as such, but on the relative proportion of slow and high-speed events in them. Hence, V values (and Ap values) in any year could be low, normal or high irrespective of the phase of the 11-year cycle, except that during sunspot minimum, V (and Ap) values are also low. However, 2–3 years after the solar minimum (well before sunspot maximum), V values increase, oscillate near a high level for several years, and may even increase further during the declining phase of sunspot activity, due to increased influence of high-speed CIRs (corotating interplanetary regions). Thus, Ap would have no fixed relationship with sunspot activity. If some terrestrial parameter shows a 11-year cycle, chances are that the solar connection is through the occurrence frequencies (and not average characteristics) of some solar parameter.  相似文献   

11.
The decay phase of the sunspot cycle 23 exhibited two unusual features. First, it lasted too long. Second, the interplanetary magnetic field intensity at earth orbit reached the lowest value since in situ measurements in space began in October 1963. These physical anomalies significantly altered the early forecasts for the sunspot activity parameters for cycle 24, made by several colleagues. We note that there was a significant change in the solar behavior during cycle 22. We discuss the observed trends and their effect on our empirical solar activity forecast technique, leading to our prediction for cycle 24 parameters; cycle 24 will be only half as active as cycle 23, reaching its peak in May 2013. We speculate on the possible implications of this outcome on future earth climate change and the ensuing socio-economic consequences.  相似文献   

12.
The Earth and the near interplanetary medium are affected by the Sun in different ways. Those processes generated in the Sun that induce perturbations into the Magnetosphere-Ionosphere system are called geoeffective processes and show a wide range of temporal variations, like the 11-year solar cycle (long term variations), the variation of ~27?days (recurrent variations), solar storms enduring for some days, particle acceleration events lasting for some hours, etc.In this article, the periodicity of ~27?days associated with the solar synodic rotation period is investigated. The work is mainly focused on studying the resulting 27-day periodic signal in the magnetic activity, by the analysis of the horizontal component of the magnetic field registered on a set of 103 magnetic observatories distributed around the world. For this a new method to isolate the periodicity of interest has been developed consisting of two main steps: the first one consists of removing the linear trend corresponding to every calendar year from the data series, and the second one of removing from the resulting series a smoothed version of it obtained by applying a 30-day moving average. The result at the end of this process is a data series in which all the signal with periods larger than 30?days are canceled.The most important characteristics observed in the resulting signals are two main amplitude modulations: the first and most prominent related to the 11-year solar cycle and the second one with a semiannual pattern. In addition, the amplitude of the signal shows a dependence on the geomagnetic latitude of the observatory with a significant discontinuity at approx. ±60°.The processing scheme was also applied to other parameters that are widely used to characterize the energy transfer from the Sun to the Earth: F10.7 and Mg II indices and the ionospheric vertical total electron content (vTEC) were considered for radiative interactions; and the solar wind velocity for the non-radiative interactions between the solar wind and the magnetosphere. The 27-day signal obtained in the magnetic activity was compared with the signals found in the other parameters resulting in a series of cross-correlations curves with maximum correlation between 3 and 5?days of delays for the radiative and between 0 and 1?days of delay for the non-radiative parameters. This result supports the idea that the physical process responsible for the 27-day signal in the magnetic activity is related to the solar wind and not to the solar electromagnetic radiation.  相似文献   

13.
The study concerns the streamer belt observed at high spectral resolution during the minimum of solar cycle 23 with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO. On the basis of a spectroscopic analysis of the O VI doublet, the solar wind plasma parameters are inferred in the extended corona. The analysis accounts for the coronal magnetic topology, extrapolated through a 3D magneto-hydrodynamic model, in order to define the streamer boundary and to analyse the edges of coronal holes. The results of the analysis allow an accurate identification of the source regions of the slow coronal wind that are confirmed to be along the streamer boundary in the open magnetic field region.  相似文献   

14.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

15.
本文利用MHD波与日冕大气耦合的磁流体动力学方程组,计算得到冕洞内的日冕大气的温度T、密度N和流速V的分布.根据这些量的分布特点,认为日球基本参数T、N和V的冕洞周变化,可以用冕洞磁场的非径向因子a值,随黑子活动的下降而变小来解释.   相似文献   

16.
It is established that the large-scale and global magnetic fields in the Sun's atmosphere do not change smoothly, and long-lasting periods of gradual variations are superseded by fast structural changes of the global magnetic field. Periods of fast global changes on the Sun are accompanied by anomalous manifestations in the interplanetary space and in the geomagnetic field. There is a regular recurrence of these periods in each cycle of solar activity, and the periods are characterized by enhanced flaring activity that reflects fast changes in magnetic structures. Is demonstrated, that the fast changes have essential influencing on a condition of space weather, as most strong geophysical disturbances are connected to sporadic phenomena on the Sun. An explanation has been offered for the origin of anomalous geomagnetic disturbances that are unidentifiable in traditionally used solar activity indices. Is shown, main physical mechanism that leads to fast variations of the magnetic fields in the Sun's atmosphere is the reconnection process.  相似文献   

17.
We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar cycle 23. Since its launch in November 1994 Wind has frequently observed the in-ecliptic solar wind upstream of the Earth’s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measure the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately determined. We present and discuss histograms of such measurements performed from 1994 to 2003. Using these large data sets, we study the density and core temperature variations with solar activity cycle and with different regimes of the solar wind. We confirm the anticorrelation of the electron density with the sunspot number, and obtain a positive correlation of the core temperature, with the sunspot number.  相似文献   

18.
本文统计分析了第20太阳周在地球轨道处观测到的有关的日球参数, 系统地给出了各种参数的平均共转变化规律:20太阳活动周的平均卡林顿周变化普遍具有双峰特征.能流极大值出现在高速流与低速流相互作用区内, 两峰能流输出并不均衡.声速的变化与太阳风速相似, 但高速流的马赫数反比低速流的低.等离子体参数对反映共转高速流并不灵敏.   相似文献   

19.
太阳风和地球磁层相互作用的两种可能类型   总被引:1,自引:1,他引:0  
本文对太阳活动20周不同活动期间的太阳风参数与地磁活动性指数分别进行了相关分析,并进一步对太阳活动极大和极小年分别对Bz和太阳风参数V、T、N的时均值日方差作了分析比较。结果指出,除目前普遍认为的IMF与地磁场重联导致的磁扰外,还有一类与Bz无关,而是由高温、高速、热不均匀太阳风等离子体导致的地磁扰动类型。   相似文献   

20.
A solar wind parcel evolves as it moves outward, interacting with the solar wind plasma ahead of and behind it and with the interstellar neutrals. This structure varies over a solar cycle as the latitudinal speed profile and current sheet tilt change. We model the evolution of the solar wind with distance, using inner heliosphere data to predict plasma parameters at Voyager. The shocks which pass Voyager 2 often have different structure than expected; changes in the plasma and/or magnetic field do not always occur simultaneously. We use the recent latitudinal alignment of Ulysses and Voyager 2 to determine the solar wind slowdown due to interstellar neutrals at 80 AU and estimate the interstellar neutral density. We use Voyager data to predict the termination shock motion and location as a function of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号