首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于1996-2005年88个引起重大地磁暴的CME(日冕物质抛射)事件、1996-2000年的47个CME事件以及1997-2002年的29个全晕状CME事件,结合ACE卫星在1AU处的太阳风和行星际磁场观测资料以及Wilcox Solar Observatory(WSO)天文台的太阳光球层磁图,分析了背景太阳风速度和日球电流片对CME到达1AU处渡越时间预报误差的影响.结果表明,背景太阳风速度与CME渡越时间误差并没有明显的相关性,在考虑了磁云通量管轴相对黄道面夹角的影响后相关性依然不明显.然而日球电流片对CME渡越时间却有明显的影响,对于初速度较小的异侧CME事件,其渡越时间大于同侧事件;而对于具有较大初速度的CME事件,异侧事件的渡越时间明显小于同侧事件.研究结果表明,CME与太阳风以及日球电流片的相互作用并不是简单的对流相互作用,造成高速CME异侧事件快于同侧事件到达地球的因素非常复杂,有待深入研究.   相似文献   

2.
Magnetic clouds are the interplanetary manifestation of coronal mass ejections, which are transient expulsions of major quantities of magnetized plasma, from the Sun toward the heliosphere. The magnetic flux and helicity are two key physical magnitudes to track solar structures from the photosphere-corona to the interplanetary medium. To determine the content of flux and helicity in magnetic clouds, we have to know their 3D structure. However, since spacecrafts register data along a unique direction, several aspects of their global configuration cannot be observed. We present a method to estimate the magnetic flux and the magnetic helicity per unit length in magnetic clouds, directly from in situ magnetic observations, assuming only a cylindrical symmetry for the magnetic field configuration in the observed cross-section of the cloud. We select a set of 20 magnetic clouds observed by the spacecraft Wind and estimate their magnetic flux and their helicity per unit length. We compare the results obtained from our direct method with those obtained under the assumption of a helical linear force-free field. This direct method improves previous estimations of helicity in clouds.  相似文献   

3.
We extend the empirical coronal mass ejection (CME) arrival model of Gopalswamy et al. [Gopalswamy, N. et al. Predicting the 1-AU arrival times of coronal mass ejections, J. Geophys. Res. 106, 29207, 2001] to predict the 1-AU arrival of interplanetary (IP) shocks. A set of 29 IP shocks and the associated magnetic clouds observed by the Wind spacecraft are used for this study. The primary input to this empirical shock arrival model is the initial speed of white-light CMEs obtained using coronagraphs. We use the gas dynamic piston–shock relationship to derive the ESA model which provides a simple means of obtaining the 1-AU speed and arrival times of interplanetary shocks using CME speeds.  相似文献   

4.
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.  相似文献   

5.
It remains an open question how magnetic energy is rapidly released in the solar corona so as to create solar explosions such as solar flares and coronal mass ejections (CMEs). Recent studies have confirmed that a system consisting of a flux rope embedded in a background field exhibits a catastrophic behavior, and the energy threshold at the catastrophic point may exceed the associated open field energy. The accumulated free energy in the corona is abruptly released when the catastrophe takes place, and it probably serves as the main means of energy release for CMEs at least in the initial phase. Such a release proceeds via an ideal MHD process in contrast with nonideal ones such as magnetic reconnection. The catastrophe results in a sudden formation of electric current sheets, which naturally provide proper sites for fast magnetic reconnection. The reconnection may be identified with a solar flare associated with the CME on one hand, and produces a further acceleration of the CME on the other. On this basis, several preliminary suggestions are made for future observational investigations, especially with the proposed Kuafa satellites, on the roles of the MHD catastrophe and magnetic reconnection in the magnetic energy release associated with CMEs and flares.  相似文献   

6.
We have analyzed 101 Coronal Mass Ejection (CME) events and their associated interplanetary CMEs (ICMEs) and interplanetary (IP) shocks observed during the period 1997–2005 from the list given by Mujiber Rahman et al. (2012). The aim of the present work is to correlate the interplanetary parameters such as, the speeds of IP shocks and ICMEs, CME transit time and their relation with CME parameters near the Sun. Mainly, a group of 10 faster CME events (VINT > 2200 km/s) are compared with a list of 91 normal events of Manoharan et al. (2004). From the distribution diagrams of CME, ICME and IP shock speeds, we note that a large number of events tends to narrow towards the ambient (i.e., background) solar wind speed (∼500 km/s) in agreement with the literature. Also, we found that the IP shock speed and the average ICME speed measured at 1 AU are well correlated. In addition, the IP shock speed is found to be slightly higher than the ICME speed. While the normal events show CME travel time in the range of ∼40–80 h with a mean value of 65 h, the faster events have lower transit time with a mean value of 40 h. The effect of solar wind drag is studied using the correlation of CME acceleration with interplanetary (IP) acceleration and with other parameters of ICMEs. While the mean acceleration values of normal and faster CMEs in the LASCO FOV are 1 m/s2, 18 m/s2, they are −1.5 m/s2 and −14 m/s2 in the interplanetary medium, respectively. The relation between CME speed and IP acceleration for normal and faster events are found to agree with that of  and  except slight deviations for the faster events. It is also seen that the faster events with less travel time face higher negative acceleration (>−10 m/s2) in the interplanetary medium up to 1 AU.  相似文献   

7.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

8.
利用多卫星多波段的综合观测数据,通过追踪光球表面等离子体速度分析计算了耀斑爆发前后磁螺度的变化,发现耀斑爆发前活动区中光球表面存在强的水平剪切运动,活动区磁螺度的注入主要由这种剪切运动所产生;使用CESE-MHD-NLFFF重建了耀斑爆发前后活动区的磁场位形,推测出耀斑过程中存在磁绳结构的抛射.基于这些分析,给出了这一螺旋状抛射结构的形成机制:爆发前暗条西侧足点的持续剪切运动驱动磁通量绳增加扭转,高度扭缠的通量绳与东侧足点附近的开放磁力线重联并与东侧足点断开,进而向外抛出并伴随解螺旋运动.另外,利用1AU处WIND卫星的观测数据在对应的行星际日冕物质抛射中找到典型磁云的观测特征.这表明除了传统上双足点均在太阳表面的磁云模型,这种单足点固定于太阳表面的磁通量绳爆发图景同样可能在行星系际空间形成磁云结构.研究结果对进一步认识磁云结构具有重要意义.   相似文献   

9.
Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.  相似文献   

10.
王洋 《空间科学学报》2019,39(5):603-612
2002年8月28日09:50UT-10:50UT,Cluster卫星在地球磁尾观测到一次导向场磁场重联事件.卫星观测到磁场重联扩散区附近清晰的霍尔(Hall)四极型磁结构.由于导向场的存在,该四极型结构被扭曲变形.在该磁场重联事件中,卫星观测到多个磁通量绳,大部分磁通量绳的核心场极性与导向场极性一致.但是,其中一例磁通量绳的核心场结构极性较复杂.该例磁通量绳中心区域核心场强度出现峰值,核心场极性和导向场极性一致;中心以外区域的核心场极性和导向场极性相反.这种复杂核心场结构以前未见报道.通过最小方向导数法,发现该磁通量绳的轴向是弯曲的.C1和C3卫星穿越了磁通量绳弯曲部分,探测到核心场极性变化;C2和C4卫星位于C1和C3卫星的北侧,仅穿越了磁通量绳弯曲处的一部分,故核心场具有单极性.   相似文献   

11.
The principal objective of this study is to analyze structures of Coronal Mass Ejections (CMEs) using a wavelet technique. We use data measured with the SOHO/LASCO coronographs C2–C3, EIT and STEREO COR1A–B, COR2A–B. We have found that different structures show up in a CME at different spatial scales of wavelets. We also study the orientation of the most intense flux and find the orientation of the structures in the CME.  相似文献   

12.
A study of the relationship between solar wind low-energy energetic particles using data from the Electron, Proton, and Alpha Monitor (EPAM) onboard the Advanced Compositional Explorer spacecraft (ACE) and geomagnetic activity using data from Canadian magnetic observatories in Canada’s polar cap, auroral zone, and subauroral zone was carried out for a period spanning 1997–2005. Full halo coronal mass ejections (CMEs) were used to gauge the initial particle enhancements and the subsequent geomagnetic activity. It was found that maximum geomagnetic activity is related to maximum particle enhancements in a non-linear fashion. Quadratic fit of the data results in expressions that can be easily used in an operational space weather setting to forecast geomagnetic disturbance quantitatively. A superposed epoch analysis shows increase in particle flux level starts hours before geomagnetic activity attains its peak, affirming the precursory nature of EPAM particles for the impending geomagnetic impact of CME. This can supplement the decision process in formulating geomagnetic warning after the launch of CME from the Sun but before the arrival of shock at Earth. The empirical relationships between solar wind low-energy energetic particles and geomagnetic activity revealed in this statistical study can be easily codified, and thus utilized in operational space weather forecast to appraise the geoeffectiveness of the CME and to provide a quantitative forecast for maximum geomagnetic activity in Canada’s polar cap, auroral zone, and subauroral zone after the occurrence of a CME.  相似文献   

13.
In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.  相似文献   

14.
磁暴急始(SSC)是强烈太阳风动压或行星际激波与磁层相互作用的结果.通常SSC事件的上升时间在4~10 min,我们把上升时间超过15 min的SSC事件称为异常SSC事件.本文利用地磁SYM-H指数鉴别出了5个有地磁观测历史以来发生的上升时间大于15 min的异常SSC事件,并利用Wind,ACE,IMP 8,Goes,Geotail多点卫星太阳风观测数据和地磁观测数据,分析了异常SSC事件的行星际原因.结果表明,异常SSC事件通常都是强烈行星际扰动引起的,5个异常SSC事件有4个对应于行星际激波,有3个对应于多步太阳风动压跃变,有1个对应于行星际电场大幅度变化;由行星际激波产生的异常SSC事件,其上升时间依赖于行星际激波的方向,方向相对于日地连线越偏,上升时间越长;异常SSC事件上升时间与行星际磁场方向关系不明显.   相似文献   

15.
Magnetic Clouds (MCs) are the interplanetary manifestation of Coronal Mass Ejections. These huge astrophysical objects travel from the Sun toward the external heliosphere and can reach the Earth environment. Depending on their magnetic field orientation, they can trigger intense geomagnetic storms. The details of the magnetic configuration of clouds and the typical values of their magnetohydrodynamic magnitudes are not yet well known. One of the most important magnetohydrodynamic quantities in MCs is the magnetic helicity. The helicity quantifies several aspects of a given magnetic structure, such as the twist, kink, number of knots between magnetic field lines, linking between magnetic flux tubes, etc. The helicity is approximately conserved in the solar atmosphere and the heliosphere, and it is very useful to link solar phenomena with their interplanetary counterpart. Since a magnetic cloud carries an important amount of helicity when it is ejected from the solar corona, estimations of the helicity content in clouds can help us to understand its evolution and its coronal origin. In situ observations of magnetic clouds at one astronomical unit are in agreement with a local helical magnetic structure. However, since spacecrafts only register data along a unique direction, several aspects of the global configuration of clouds cannot be observed. In this paper, we review the general properties of magnetic clouds and different models for their magnetic structure at one astronomical unit. We describe the corresponding techniques to analyze in situ measurements. We also quantify their magnetic helicity and compare it with the release of helicity in their solar source for some of the analyzed cases.  相似文献   

16.
Magnetic clouds (MCs) are highly magnetized plasma structures that have a low proton temperature and a magnetic field vector that rotates when seen by a heliospheric observer. More than 25 years of observations of magnetic and plasma properties of MCs at 1 AU have provided significant knowledge of their magnetic structure. However, because in situ observations only give information along the trajectory of the spacecraft, their real 3D magnetic configuration remains still partially unknown. We generate a set of synthetic clouds, exploring the space of parameters that represents the possible orientations and minimum distances of the satellite trajectory to the cloud axis, p. The synthetic clouds have a local cylindrical symmetry and a linear force-free magnetic configuration. From the analysis of synthetic clouds, we quantify the errors introduced in the determination of the orientation/size (and, consequently, of the global magnetohydrodynamic quantities) by the Minimum Variance method when p is not zero.  相似文献   

17.
Solar filament eruptions play a crucial role in triggering coronal mass ejections (CMEs). More than 80% of eruptions lead to a CME. This correlation has been studied extensively during the past solar cycles and the last long solar minimum. The statistics made on events occurring during the rising phase of the new solar cycle 24 is in agreement with this finding. Both filaments and CMEs have been related to twisted magnetic fields. Therefore, nearly all the MHD CME models include a twisted flux tube, called a flux rope. Either the flux rope is present long before the eruption, or it is built up by reconnection of a sheared arcade from the beginning of the eruption.  相似文献   

18.
A series of three flares of GOES class M, M and C, and a CME were observed on 20 January 2004 occurring in close succession in NOAA 10540. Types II, III, and N radio bursts were associated. We use the combined observations from TRACE, EIT, Hα images from Kwasan Observatory, MDI magnetograms, GOES, and radio observations from Culgoora and Wind/ WAVES to understand the complex development of this event. We reach three main conclusions. First, we link the first two impulsive flares to tether-cutting reconnections and the launch of the CME. This complex observation shows that impulsive quadrupolar flares can be eruptive. Second, we relate the last of the flares, an LDE, to the relaxation phase following forced reconnections between the erupting flux rope and neighbouring magnetic field lines, when reconnection reverses and restores some of the pre-eruption magnetic connectivities. Finally, we show that reconnection with the magnetic structure of a previous CME launched about 8 h earlier injects electrons into open field lines having a local dip and apex (located at about six solar radii height). This is observed as an N-burst at decametre radio wavelengths. The dipped shape of these field lines is due to large-scale magnetic reconnection between expanding magnetic loops and open field lines of a neighbouring streamer. This particular situation explains why this is the first N-burst ever observed at long radio wavelengths.  相似文献   

19.
基于Gopalswamy预报日冕物质抛射(CME)渡越时间的经验模型,选取1996-2007年间52个与地磁效应Dst<-50nT相关的CME事件以及10个引起特大磁暴(Dst<-200nT)的CME事件,结合ACE卫星在1AU处的太阳风观测资料,分析背景太阳风对流效应对CME到达1AU处渡越时间预报的影响.对于52个CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由16.5h降为11.4h,修正后的误差分布趋向于高斯分布,并且68%事件的预报误差小于15h.对于10个引起特大磁暴的CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由10.6h降低到6.5h,其中6个事件的预报误差小于5h.研究结果表明,对于CME事件,考虑背景太阳风对流效应的影响可以降低预报CME渡越时间的标准偏差,说明太阳风对流效应对预报CME事件渡越时间具有重要作用.   相似文献   

20.
We briefly review the status of our physical understanding of energy buildup and release in transient active phenomena on the Sun. Such understanding is necessary in order to improve our capabilities to predict such events and their effects in interplanetary space and near-Earth environment. We then discuss the research that we consider is needed for such improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号