首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abrashkin  V. I.  Volkov  M. V.  Egorov  A. V.  Zaitsev  A. S.  Kazakova  A. E.  Sazonov  V. V. 《Cosmic Research》2003,41(6):593-612
We compare the results of two methods used to determine the angular velocity of the Foton-12 satellite and the low-frequency component of microaccelerations onboard it. The first method is based on reconstruction of the satellite's rotational motion using the data of onboard measurements of the strength of the Earth's magnetic field. The motion (time dependence of the orientation parameters and angular velocity) was found from the condition of best approximation of the measurement data by the functions calculated along the solutions to equations of attitude motion of the satellite. The solutions found were used to calculate the quasistatic component of microaccelerations at certain points of the satellite, in particular, at the point of location of an accelerometer of the QSAM system. Filtration of the low-frequency component of the angular velocity and microacceleration from the data of measurements by a sensor of angular velocity and by the accelerometer of this system served as a second method. The filtration was made using the discrete Fourier series. A spectral analysis of the functions representing the results of determining the angular velocity and microacceleration by both methods is performed. Comparing the frequencies and amplitudes of the harmonic component of these functions allowed us to estimate the accuracy of measurements made by the QSAM system in the low-frequency range.  相似文献   

2.
The results of reconstruction of uncontrolled rotational motion of the Foton-12 satellite using the measurement data of onboard sensors are presented. This problem has already been solved successfully several years ago. The satellite motion was reconstructed using the data of measuring the Earth’s magnetic field. The data of measuring the angular velocity and microaccelerations by the QSAM system were actually not used for this purpose, since these data include a clearly seen additional component whose origin was at that time unclear. This component prevented one from using these data directly for reconstruction of the angular motion. Later it became clear that the additional component was caused by the Earth’s magnetic field. Discovery of this fact allowed us to make necessary corrections when processing the QSAM system data and to use them for reconstruction of rotational motion of Foton-12. Below, a modified method of processing the QSAM system data is described together with the results of its application. The main result is obtained by comparing the motion reconstructed from measurements of angular velocity or acceleration with that found by way of processing the measurements of the Earth’s magnetic field. Their coincidence turned out to be rather accurate.  相似文献   

3.
We analyze the microacceleration measurements carried out onboard the Foton-11 satellite with the three-component accelerometer BETA. The microaccelerations were recorded virtually throughout the entire orbital flight of the Foton-11 satellite. The data obtained were analyzed in the following way. First they were used to determine the actual rotational motion of the satellite for several arbitrarily selected time intervals 4 h long. This problem was solved by constructing the approximation of the microacceleretation low-frequency component (previously determined from the data) by its calculated analog computed along the solutions to differential equations of rotational motion of the satellite. The approximation was made by the least squares method. As a result, those mathematical model parameters and the solutions to equations of motion were found that gave the best consistency of the microacceleretation low-frequency component and its calculated analog. Then the spectral analysis of the low-frequency component and its calculated analog was made. It was shown that, although basic harmonics of these functions coincided sufficiently well, some harmonics of the low-frequency component failed to be interpreted in terms of the satellite's rotational motion.  相似文献   

4.
The results of determining the uncontrolled rotational motion of the Foton M-2 satellite (in orbit from May 31 to June 16, 2005) are presented. The determination was made using the data of onboard measurements of the Earth’s magnetic field strength. Segments 270 min long (three orbits) were selected from these data covering the first two thirds of the flight. On each such segment the data were processed jointly by the least squares method using integration of the equations of attitude motion of the satellite. In processing, the initial conditions of motion and parameters of the used mathematical model were estimated. The thus obtained results gave a complete overview of the satellite motion. This motion, having started with a small angular velocity, gradually accelerated, and in two days became close to the regular Euler precession of an axisymmetric solid body. On June 09, 2005 (the last day of measurements) the angular velocity of the satellite relative to its lengthwise axis was about 1.1 deg/s, while the projection of the angular velocity onto a plane perpendicular to this axis had an absolute value of about 0.11 deg/s. Deviations of the lengthwise axis from a normal to the orbit plane did not exceed 60°. Based on the results of determination of the rotational motion of the satellite, calculations of quasi-static microaccelerations on its board are performed.  相似文献   

5.
The results of the determination of the uncontrolled attitude motion of the International Space Station during its unmanned flight in 1999 are presented. The data of onboard measurements of three components of the angular velocity are used for this determination. These data covering an interval of slightly less than one orbit were jointly processed by the least squares method, by integrating the equations of motion of the station relative to its center of mass. As a result of this processing, the initial conditions of the motion and the parameters of the mathematical model used were estimated. The actual motion of the station has been determined for 20 such intervals during April–November. Throughout these intervals, the station rotated about the axis of the minimum moment of inertia, the latter executing small oscillations relative to the local vertical. Such a mode, known as the mode of gravitational orientation of a rotating satellite or the mode of generalized gravitational orientation, was planned before the flight. The measurements were made to verify it. The quasistatic component of the microaccelerations aboard the station is estimated for this mode.  相似文献   

6.
The effect of residual microaccelerations on the distribution of a dopant in a semiconductor melt located in a heated closed cavity onboard an Earth-orbiting satellite is considered in the context of a model problem of thermal convection. The amplitude–frequency characteristics of the response of this distribution to the perturbing microaccelerations are obtained. It is demonstrated that the effect of low-frequency microaccelerations decreases when the frequency increases. A comparison is made of the macroscopic inhomogeneities of the dopant concentration due to the actual low-frequency (quasi-static) component of microaccelerations onboard different spacecraft: the orbital station Mir, the satellite Foton-11, a Space Shuttle orbiter, and the International Space Station. A substantial effect of the rotational motion of the spacecraft on the character of the time behavior of a macroscopic inhomogeneity is demonstrated.  相似文献   

7.
The results of reconstruction of rotational motion of the Foton M-3 satellite during its uncontrolled flight in September 2007 are presented. The reconstruction was performed by processing the data of onboard measurements of the Earth’s magnetic field obtained by the DIMAC instruments. The measurements were carried out continuously throughout the flight, but the processing technique dealt with the data portions covering time intervals of a few orbital revolutions. The data obtained on each such interval were processed jointly by the least squares method with using integration of the equations of satellite motion relative to its center of mass. When processing, the initial conditions of motion and the used mathematical model’s parameters were estimated. The results of processing 16 data sets gave us complete information about the satellite motion. This motion, which began at a low angular velocity, had gradually accelerated and in five days became close to the regular Euler precession of an axisymmetric solid body. At the end of uncontrolled flight the angular velocity of the satellite relative to its lengthwise axis was 0.5 deg/s; the angular velocity projection onto the plane perpendicular to this axis had a magnitude of about 0.18 deg/s.  相似文献   

8.
The problem of the interpretation of measurements made by means of a convection sensor is considered. The sensor is a cubic chamber filled by a viscous fluid (gas). Fixed and unequal temperatures are maintained on two opposite sides of the cube; the other sides are perfect heat conductors. Two differential thermocouples are placed inside the chamber to measure the temperature difference at two pairs of fixed points. The sensor is mounted aboard the Earth's satellite. Mathematical models of various degrees of complexity are proposed which describe processes of heat and mass transfer under the action of a quasistatic component of microaccelerations. The results of mathematical simulation of the data of sensor thermocouples presenting a response to the real quasistatic component of microaccelerations which took place aboard the Mirstation are given. It is shown that under usual conditions of an orbital mission the sensor presents a linear low-frequency filter. By combining the data of several identical sensors, tightly arranged and oriented in a certain way, it is possible to measure low-frequency components of the angular acceleration of the satellite and linear microaccelerations at the point of the sensor position.  相似文献   

9.
The results of determination of the uncontrolled attitude motion of the Foton-12 satellite (placed in orbit on September 9, 1999, terminated its flight on September 24, 1999) are presented. The determination was carried out by the onboard measurement data of the Earth's magnetic field strength vector. Intervals with a duration of several hours were selected from data covering almost the entire flight. On each such interval the data were processed simultaneously using the least squares method by integrating the satellite's equations of motion with respect to the center of mass. The initial conditions of motion and the parameters of the mathematical model employed were estimated in processing. The results obtained provided for a complete representation of the satellite's motion during the flight. This motion, beginning with a small angular velocity, gradually sped up. The growth of the component of the angular velocity with respect to the longitudinal axis of the satellite was particularly strong. During the first several days of the flight this component increased virtually after every passage through the orbit's perigee. As the satellite's angular velocity increased, its motion became more and more similar to the regular Euler precession of an axisymmetric rigid body. In the last several days of flight the satellite's angular velocity with respect to its longitudinal axis was about 1 deg/s and the projection of the angular velocity onto the plane perpendicular to this axis had a magnitude of approximately 0.15 deg/s. The deviation of the longitudinal axis from the normal to the orbit plane did not exceed 60°. The knowledge of the attitude motion of the satellite allowed us to determine the quasi-steady microacceleration component onboard it at the locations of the technological and scientific equipment.  相似文献   

10.
We have described an express technique for processing the results of experiments with a DAKON-M convection sensor on board the Service Module of the International Space Station (ISS) in 2011. The technique uses a certain rule to compare the sensor measurements with the calculated data on the quasistatic component of microacceleration at the point of installation. The sensor experiments have been conducted during shuttle docking and undocking, when low-frequency microaccelerations on the ISS were significant. The microaccelerations have been calculated using measurement data of the MAMS low-frequency accelerometer installed in the Lab module and the telemetry data on the ISS rotational motion. This has made it possible to convert the MAMS measurement data to the DAKON-M convection sensor installation point. A comparison of sensor readings with calculated microaccelerations has revealed fairly good agreement between them.  相似文献   

11.
An integral statistical procedure of determination of the attitude motion of a satellite using the data of onboard measurements of angular velocity vectors and the strength of the Earth’s magnetic field (EMF) is suggested. The procedure uses only the equations of kinematics of a solid body and is applicable to determining both controlled and uncontrollable motions of a satellite at any external mechanical moments acting upon it. When applying this procedure, the data of measurements of both types, accumulated during a certain interval of time, are processed jointly. The data of measuring the angular velocity are smoothed by discrete Fourier series, and these series are substituted into kinematical Poisson equations for elements of the matrix of transition from a satellite-fixed coordinate system to the orbital coordinate system. The equations thus obtained represent a kinematical model of the satellite motion. The solution to these equations (which approximate the actual motion of a satellite) is found from the condition of the best (in the sense of the least squares method) fit of the data of measuring the EMF strength vector to its calculated values. The results of testing the suggested procedure using the data of measurements of the angular velocity vectors onboard the Foton-12 satellite and measurements of EMF strengths are presented.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 295–305.Original Russian Text Copyright © 2005 by Abrashkin, Volkov, Voronov, Egorov, Kazakova, Pankratov, Sazonov, Semkin.  相似文献   

12.
Quasi-static microaccelerations of four satellites of the Foton series (nos. 11, 12, M-2, M-3) were monitored as follows. First, according to measurements of onboard sensors obtained in a certain time interval, spacecraft rotational motion was reconstructed in this interval. Then, along the found motion, microacceleration at a given onboard point was calculated according to the known formula as a function of time. The motion was reconstructed by the least squares method using the solutions to the equations of satellite rotational motion. The time intervals in which these equations make reconstruction possible were from one to five orbital revolutions. This length is increased with the modulus of the satellite angular velocity. To get an idea on microaccelerations and satellite motion during an entire flight, the motion was reconstructed in several tens of such intervals. This paper proposes a method for motion reconstruction suitable for an interval of arbitrary length. The method is based on the Kalman filter. We preliminary describe a new version of the method for reconstructing uncontrolled satellite rotational motion from magnetic measurements using the least squares method, which is essentially used to construct the Kalman filter. The results of comparison of both methods are presented using the data obtained on a flight of the Foton M-3.  相似文献   

13.
The actual controlled rotational motion of the Foton M-4 satellite is reconstructed for the mode of single-axis solar orientation. The reconstruction was carried out using data of onboard measurements of vectors of angular velocity and the strength of the Earth’s magnetic field. The reconstruction method is based on the reconstruction of the kinematic equations of the rotational motion of a solid body. According to the method, measurement data of both types collected at a certain time interval are processed together. Measurements of the angular velocity are interpolated by piecewise-linear functions, which are substituted in kinematic differential equations for a quaternion that defines the transition from the satellite instrument coordinate system to the inertial coordinate system. The obtained equations represent the kinematic model of the satellite rotational motion. A solution of these equations that approximates the actual motion is derived from the condition of the best (in the sense of the least squares method) match between the measurement data of the strength vector of the Earth’s magnetic field and its calculated values. The described method makes it possible to reconstruct the actual rotational satellite motion using one solution of kinematic equations over time intervals longer than 10 h. The found reconstructions have been used to calculate the residual microaccelerations.  相似文献   

14.
Levtov  V. L.  Romanov  V. V.  Babkin  E. V.  Ivanov  A. I.  Stazhkov  V. M.  Sazonov  V. V. 《Cosmic Research》2004,42(2):165-177
The results of processing the data of measurements of microaccelerations, carried out onboard the Mir orbital station using the Russian VM-09 system of accelerometers, are described. The system was developed by the Composite Research-Production Association. The sensitivity of this system was 10–4 m/s2; its frequency band had limits from a few tenths of a hertz up to 100 Hz. The measurements were carried out in the real-time mode of data transmission to the Earth, when the orbital station flew over the telemetry data receiving point. The instrument's sampling rate was 200 measurements per second, and the length of a continuous run of measurements did not exceed 10 min. The following problems are considered in the paper: (1) isolation of cyclic trends from the measurement data; (2) estimation of spectral density of the data component with a continuous spectrum; and (3) low-frequency filtration of the measurement data  相似文献   

15.
We present the resutls of a prompt determination of the uncontrolled attitude motion of the Foton M-2 satellite, which was in orbit from May 31 to June 16, 2005. The data of onboard measurements of the angular velocity vector were used for this determination. The measurement sessions were carried out once a day, each lasting 83 min. Upon terminating a session, the data were transmitted to the ground to be processed using the least squares method and integrating the equations of motion of the satellite with respect to its center of mass. As a result of processing, the initial conditions of motion during a session were estimated, as well as parameters of the mathematical model used. The satellite’s actual motion is determined for 12 such sessions. The results obtained in flight completely described the satellite’s motion. This motion, having begun with a small angular velocity, gradually became faster, and in two days became close to the regular Euler precession of an axisymmetric solid body. On June 14, 2005 the angular velocity of the satellite with respect to its longitudinal axis was approximately 1.3 degrees per second, and the angular velocity projection onto a plane perpendicular to this axis had a magnitude of about 0.11 degrees per second. The results obtained are consistent with more precise results obtained later by processing the data on the Earth’s magnetic field measured on the same satellite, and they complement the latter in determination of the motion in the concluding segment of the flight, when no magnetic measurements were performed.  相似文献   

16.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   

17.
The mode of monoaxial solar orientation of a designed artificial Earth satellite (AES), intended for microgravitational investigations, is studied. In this mode the normal line to the plane of satellite’s solar batteries is permanently directed at the Sun, the absolute angular velocity of a satellite is virtually equal to zero. The mode is implemented by means of an electromechanical system of powered flywheels or gyrodynes. The calculation of the level of microaccelerations arising on board in such a mode, was carried out by mathematical modeling of satellite motion with respect to the center of masses under an effect of gravitational and restoring aerodynamic moments, as well as of the moment produced by the gyrosystem. Two versions of a law for controlling the characteristic angular momentum of a gyrosystem are considered. The first version provides only attenuation of satellite’s perturbed motion in the vicinity of the position of rest with the required velocity. The second version restricts, in addition, the increase in the accumulated angular momentum of a gyrosystem by controlling the angle of rotation of the satellite around the normal to the light-sensitive side of the solar batteries. Both control law versions are shown to maintain the monoaxial orientation mode to a required accuracy and provide a very low level of quasistatic microaccelerations on board the satellite.  相似文献   

18.
The mathematical model, which allowed us to reconstruct the rotational motion of the Bion M-1 and Foton M-4 satellites by processing the measurements of onboard magnetometers and the angular velocity sensor, is sufficiently detailed and accurate. If we slightly lower the requirements for accuracy and transfer to a rougher model, i.e., we will not update the biases in measurements of the angular velocity component, then the measurement processing technique can be significantly simplified. The volume of calculations in minimizing the functional of the least-square technique is reduced; the most complicated part of calculations is performed using the standard procedure of computational linear algebra. This simplified technique is described below, and the examples of its application for reconstructing the rotational motion of the Foton M-4 satellite are presented. A noticeable distinction in the reconstructions of motion, constructed by simplified and more exact techniques, is revealed in processing the measurements over time intervals longer than 4 hours.  相似文献   

19.
The low-frequency component is investigated in the data of measurements performed onboard the Foton M-2 satellite with the three-component accelerometer TAS-3. Investigations consisted in comparison of this component with its calculated analog found from a reconstruction of the satellite’s attitude motion. The influence of the Earth’s magnetic field on the accelerometer readings is discovered by way of spectral analysis of the functions representing the results of determining the low-frequency microacceleration by two methods. After making correction for this influence, the results obtained by these two methods coincided within a root-mean-square error of less than 10?6 m/s2.  相似文献   

20.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号