首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
分析了JTIDS系统的结构与特点,重点探讨了其抗干扰性能,在Simulink仿真平台实现了对JTIDS系统的仿真,给出了具体的仿真模型并对模型中的每个模块进行了较为详细的说明,对仿真结果进行了简要分析.  相似文献   

2.
文章介绍了卫星服务舱湿度控制系统的组成及工作原理。采用分析和测定相结合的方法建立了基于传递函数的系统的数学模型,通过试验验证了该模型的准确性, 并用模型分析了系统性能, 分析结果表明系统性能满足了技术指标的要求。文章最后提出了进一步提高系统性能的主要途径,这为改进系统设计提供了理论依据。  相似文献   

3.
金属型冒口尺寸较大,不仅浪费金属液而且清理费用高,同时还不易保证铸件内部质量。采用了浮珠保温冒口后,使铸件得到了良好的补缩,提高了铸件的内部质量;由于冒口直径的缩小节约了铝液,给清理工作带来了很大方便,降低了铸件成本,提高了经济效益。  相似文献   

4.
建立了空间拦截中导弹与目标的相对运动方程。论述了卡尔曼滤波器的可观性准则,研究了跟踪滤波器的可观性,并分析了影响跟踪滤波器可观性的因素。数字仿真证实了理论的正确性。  相似文献   

5.
从新会计准则角度探析上市公司盈余管理   总被引:2,自引:0,他引:2  
新会计准则的出台对我国上市公司的会计核算带来了实质性的影响,与原来的准则相比,毫无疑问新准则有了极大的完善,向国际会计准则的趋同迈出了一大步。本文以新会计准则出台为契机,从盈余管理的内涵入手,揭示了会计准则与盈余管理的关系,剖析了新会计准则对上市公司盈余管理的制约因素,分析了新会计准则下盈余管理提供了新的利润操纵空间以及探讨了新会计准则下对上市公司盈余管理的规范措施。  相似文献   

6.
介绍了软件可靠性和软件度量的概念 ,阐述了航天控制软件的特点 ,提出了可靠性度量的选择准则 ,推荐了 14种适用于航天控制软件的可靠性度量  相似文献   

7.
文章提出了一种三角形缝隙微带天线,在贴片表面开槽实现了双频,且天线能够工作在Ls波段和S波段上,并保证了相应的带宽;通过截去三角形的一角和选择合适的馈电点,实现了天线的圆极化,同时也展宽了轴比带宽;通过理论分析和计算机优化,给出了天线的具体参数。  相似文献   

8.
高温合金热防护系统设计与分析   总被引:3,自引:0,他引:3  
赵剑  谢宗蕻  张磊 《宇航学报》2008,29(5):1677-1684
金属热防护系统是高超飞行器热防护系统的理想候选方案。给出了一套高温合金 金属热防护系统的初始设计方案,进行了金属热防护系统各功能层选材;给出了金属蜂窝材 料的宏观力学性能和导热性能等效方法;建立了金属热防护系统简化的一维有限元传热分析 模型,提出了采用迭代分析方式说现的金属热防护系统隔热层尺寸优化方法;建立了金属热 防护系统的三维有限元分析模型,实现了金属热防护系统的热弹性分析;最后通过典型算例 验证了上述方法的有效性。  相似文献   

9.
概述了航天器总体设计要求 ,从 8个方面列出了航天器的特性 ,阐述了航天器的组成和有效载荷与平台的功能  相似文献   

10.
介绍了数控机床工具系统的分类和组成,重点介绍了高速切削工具系统的发展状况。 阐述了各种刀具材料的特性和刀具选择的基本原则。并分析了动平衡对工具系统的影响。  相似文献   

11.
V.F. Prisniakov  V.P. Platonov   《Acta Astronautica》2007,61(11-12):1093-1106
The history of the life of V.I. Voznyuk is a history of the phenomenon of the Soviet rocket progress when the engineers with experience of launch of military rocket of small radius of action were testing the ballistic missiles. The remarkable and little-known destiny of Voznuk is the history of the Soviet rocket technology experts who had a severe practical schooling of command by the military forces of the first combat missiles “Katucha” during the grim military years (including the grandiose fight in Stalingrad) and then they have continued to launch the ballistic missiles. V.I. Voznyuk worked as the chief of the first Soviet cosmodrome Kapustin Yar for almost 30 years—since the most difficult moment of its organization. He organized a launch of the first Soviet ballistic missiles R-1, R-2, R-5M of S. Korolev. This report is about the outstanding achievement of the organizing ability of V.I. Voznyuk—about the launch of a missile with a nuclear warhead in 1956. V.I. Voznyuk closes a unique chain in the world of outstanding figures of space-rocket technology who were born or lived in Ukraine from designers of missile up to the organizers of its manufacture and now up to the organizers of the tests of rockets—J. Aizenberg, V. Budnik, O. Baclanov, V. Dogujiev, M. Galasj, N. Gerasuta, V. Gluschko, B. Gubanov, A. Gudimenko, I. Ivanov, G. Kesunjko, B. Konoplev, S. Korolev, V. Kovtunenko, V. Kukuschkin, O. Makarov, A. Nedaivoda, M. Reshetniyov, Yu. Semenov, V. Sergeev, Yu. Smetanin, V. Tchelomey, D. Torchiy, V. Utkin and M. Yangel.  相似文献   

12.
《Cosmic Research》2007,45(4):273-286
The complex of scientific pay load installed onboard the research and educational Universitetskii-Tatyana microsatellite of Moscow State University is described. The complex is designed to study charged particles in the near-earth space and ultraviolet emissions of the atmosphere. Data of the measurements of charged particle fluxes in the microsatellite orbit are presented, spectra are calculated, and the dynamics of penetration boundaries for protons of solar cosmic rays (SCR) during geomagnetic disturbances in 2005 is investigated. Intensities of the ultraviolet emission are measured in the entire range of variation of the atmospheric irradiation, as well as intensities of auroras in the polar regions of the Northern and Southern hemispheres. The experimental data on flashes of ultraviolet radiation (transient light phenomena in the upper atmosphere) are considered, and some examples of oscillograms of their temporal development and their distribution over geographical coordinates are presented. Original Russian Text ? V.A. Sadovnichy, M.I. Panasyuk, S.Yu. Bobrovnikov, N.N. Vedenkin, N.A. Vlasova, G.K. Garipov, O.R. Grigorian, T.A. Ivanova, V.V. Kalegaev, P.A. Klimov, A.S. Kovtyukh, S.A. Krasotkin, N.V. Kuznetsov, S.N. Kuznetsov, E.A. Muravyeva, I.N. Myagkova, N.N. Pavlov, R.A. Nymmik, V.L. Petrov, M.V. Podzolko, V.V. Radchenko, S.Ya. Reisman, I.A. Rubinshtein, M.O. Riazantseva, E.A. Sigaeva, E.N. Sosnovets, L.I. Starostin, A.V. Sukhanov, V.I. Tulupov, B.A. Khrenov, V.M. Shakhparonov, V.N. Sheveleva, A.V. Shirokov, I.V. Yashin, V.V. Markelov, N.N. Ivanov, V.N. Blinov, O.Yu. Sedykh, V.P. Pinigin, A.P. Papkov, E.S. Levin, V.M. Samkov, N.N. Ignatiev, V.S. Yamnikol, 2007, published in Kosmicheskie Issledovaniya, 2007, vol. 45, No. 4, pp. 291–305.  相似文献   

13.
The main goal of this paper is to describe and emphasize the important discoveries made since 1986 in the engineering design of space fusion propulsion plants.

Among the important discoveries are four fundamental design principles (DPs) which should be used when adapting candidate Earth-based fusion-electric power plants to propulsion in space.

1. DP1. Maximize direct access to space for waste radiation.
2. DP2. Operate components as passive radiators whenever possible.
3. DP3. Optimize the plasma characteristics for best specific jet power
4. DP4. Optimize mission capability versus lifetime-mass-to-orbit (LMTO).

Another discovery is a design philosophy called IDEAs (Integrated Design Environment Algorithms) which is a tool for discovering new fundamental design principles.

These discoveries allowed us to adapt, and then to optimize, an earth-based fusion-electric magnetic-mirror-fusion reactor concept for propulsion in space. The resulting design is called the Mirror Fusion Propulsion System (MFPS); and its design status is reviewed.

This work can be used as a general road map for others attempting to convert earth-based designs to propulsion in space. It also has applicability to matter-antimatter propulsion systems engineering.  相似文献   


14.
Bluem V  Paris F 《Acta Astronautica》2001,48(5-12):287-297
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adapted at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICAL (correction of ZOOLOGICASL) COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i.e. that the plants exhibited biomass production rates identical to the sound controls and that as well the reproductive, and the immune system as the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle flight (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiment and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the shortterm space experiments with the C.E.B.A.S. MINI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated "reproduction module" for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

15.
Bluem V  Paris F 《Acta Astronautica》2002,50(12):775-785
The closed equilibrated biological aquatic system (C.E.B.A.S) is a man-made aquatic ecosystem which consists of four subcomponents: an aquatic animal habitat, an aquatic plant bioreactor, an ammonia oxidizing bacteria filter and a data acquisition/control unit. It is a precursor for different types of fish and aquatic plant production sites which are disposed for the integration into bioregenerative life-support systems. The results of two successful spaceflights of a miniaturized C.E.B.A.S version (the C.E.B.A.S. MINI MODULE) allow the optimization of aquatic food production systems which are already developed in the ground laboratory and open new aspects for their utilization as aquatic modules in space bioregenerative life support systems. The total disposition offers different stages of complexity of such aquatic modules starting with simple but efficient aquatic plant cultivators which can be implemented into water recycling systems and ending up in combined plant/fish aquaculture in connection with reproduction modules and hydroponics applications for higher land plants. In principle, aquaculture of fishes and/or other aquatic animals edible for humans offers optimal animal protein production under lowered gravity conditions without the tremendous waste management problems connected with tetrapod breeding and maintenance. The paper presents details of conducted experimental work and of future dispositions which demonstrate clearly that aquaculture is an additional possibility to combine efficient and simple food production in space with water recycling utilizing safe and performable biotechnologies. Moreover, it explains how these systems may contribute to more variable diets to fulfill the needs of multicultural crews.  相似文献   

16.
Based on the construction principle of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) two novel combined animal-plant production systems were developed in laboratory scale the first of which is dedicated to mid-term operation in closed state up to two years. In principle both consist of the "classic" C.E.B.A.S. subcomponents: animal tank (Zoological Component), plant cultivators (Botanical Component), ammonia converting bacteria filter (Microbial Component) and data acquisition/control unit (Electronical Component). The innovative approach in the first system is the utilization of minimally three aquatic plant cultivators for different species. In this one the animal tank has a volume of about 160 liters and is constructed as an "endless-way system" surrounding a central unit containing the heat exchanger and the bacteria filter with volumes of about 1.5 liters each. A suspension plant cultivator (1 liter) for the edible duckweed Wolffia arrhiza is externally connected. The second plant cultivator is a meandric microalgal bioreactor for filamentous green algae. The third plant growth facility is a chamber with about 2.5 liters volume for cultivation of the "traditional" C.E.B.A.S. plant species, the rootless buoyant Ceratophyllum demersum. Both latter units are illuminated with 9 W fluorescent lamps. In the current experiment the animal tank contains the live-bearing teleost fish Xiphophorus helleri and the small pulmonate water snail Biomphalaria glabrata because their physiological adaptation to the closed system conditions is well known from many previous C.E.B.A.S. experiments. The water temperature is maintained at 25 degrees C and the oxygen level is regulated between 4 and 7 mg/l by switching on and off the plant cultivator illuminations according to a suitable pattern thus utilizing solely the oxygen produced by photosynthesis. The animals and the microorganisms of filter and biofilm provide the plants with a sufficient amount of carbon dioxide. Oxygen concentration, pH value, temperature and redox potential are on-line recorded. Ion concentrations and numbers of living germs in the system water are determined twice monthly in the laboratory from samples taken from a special "sample removal module"; the sample volume is automatically replaced from an reservoir container. A rotatory pump produces a water flow of about 38 l/min. For a similar smaller test system with approx. 10 l volume developed from the C.E.B.A.S.-MINI-MODULE a novel indirect solar energy supply is tested which has a buffer capacity to maintain the system for 7 days in darkness under central European climate conditions also in winter. It contains only a single plant cultivator which is operated with Wollfia arrhiza. This lemnacean plant is able to produce large amounts of plant biomass in a short time by vegetative reproduction via daughter fronds. This easy-to-handle apparatus is dedicated to be operative more than 4 month. The experimental animals and microorganisms are the same as in the large system. The paper provides detailed information on the system construction principles and the biological, physical and chemical data of the initial phase of the test runs of both systems with the main focus on the large one.  相似文献   

17.
Charles A. Lundquist   《Acta Astronautica》2009,65(11-12):1530-1536
The Sputnik IV launch occurred on May 15, 1960. On May 19, an attempt to deorbit a ‘space cabin’ failed and the cabin went into a higher orbit. The orbit of the cabin was monitored and Moonwatch volunteer satellite tracking teams were alerted to watch for the vehicle demise. On September 5, 1962, several team members from Milwaukee, Wisconsin made observations starting at 4:49 a.m. of a fireball following the predicted orbit of Sputnik IV. Requests went out to report any objects found under the fireball path. An early morning police patrol in Manitowoc had noticed a metal object on a street and had moved it to the curb. Later the officers recovered the object and had it dropped off at the Milwaukee Journal. The Moonwarch team got the object and reported the situation to Moonwatch Headquarters at the Smithsonian Astrophysical Observatory. A team member flew to Cambridge with the object. It was a solid, 9.49 kg piece of steel with a slag-like layer attached to it. Subsequent analyses showed that it contained radioactive nuclei produced by cosmic ray exposure in space. The scientists at the Observatory quickly recognized that measurements of its induced radioactivity could serve as a calibration for similar measurements of recently fallen nickel–iron meteorites. Concurrently, the Observatory directorate informed government agencies that a fragment from Sputnik IV had been recovered. Coincidently, a debate in the UN Committee on Peaceful Uses of Outer Space involved the issue of liability for damage caused by falling satellite fragments. On September 12, the Observatory delivered the bulk of the fragment to the US Delegation to the UN. Two days later, the fragment was used by US Ambassador Francis Plimpton as an exhibit that the time had come to agree on liability for damage from satellite debris. He offered the Sputnik IV fragment to USSR Ambassador P.D. Morozov, who refused the offer. On October 23, Drs. Alla Massevitch and E.K. Federov of the USSR visited the Observatory. They were shown the Sputnik IV fragment. Measurements on the fragment were reported at the American Geophysical Union meeting on December 28, 1962. Early in January, 1963, the Soviet Embassy told the State Department that the USSR wished to accept the remaining fragment. On January 5, 1963 it was picked up by the Soviet Embassy. This four-month saga dramatically illustrated the need for international agreements on satellite debris issues.  相似文献   

18.
A hydrodynamic analogy for the solution of doubly averaged Hill problem obtained by M.L. Lidov [1] is discussed. S.A. Chaplygin used a similar analogy reducing the two-dimensional problem of motion of a compressible fluid to the same problem for some fictitious incompressible fluid [2]. In this case, we are led to the range of ideas which go back to the work by N.E. Zhukowski [3]. Two versions of this hydrodynamic analogy, on the basis of the model of a stratified fluid (exact analogy) and on the basis of the model of a homogeneous fluid (approximate analogy), are considered as well as some consequences of them.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 126–134.Original Russian Text Copyright © 2005 by Rabinovich, Prokhorenko.  相似文献   

19.
飞行器多学科设计优化概述   总被引:12,自引:3,他引:12  
王书河  何麟书 《宇航学报》2004,25(6):697-701
针对飞行器多学科设计优化进行了概述。提出多学科设计优化的综合性定义,介绍了国内外发展现状。指明多学科设计优化的组成要素和存在学科耦合、计算耗时两个难点,并认为其关键问题是离散设计变量和非数值型综合设计变量处理、工程综合评估、数据流管理等。阐述了可用于多学科设计优化的各种方法及其优缺点。并提出了多学科设计优化的研究重点。  相似文献   

20.
互斥方案决策时,运用净现值和内部收益率指标,经常遇到结论相矛盾的情况,本文主要应用方案重复法和投资增额评价法解决这一问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号