首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The scheduling of crew rotations for up to 180 days on Space Station Freedom presents a special challenge for behavioral scientists who are tasked with providing psychological support for the crews, their families, and mission flight controllers. Preflight psychological support planning may minimize the negative impact of psychological and social issues on mission success, as well as assist NASA management in making real-time mission planning decisions in the event of a significant social event (for example, the death of a family member). During flight, the combined psychological, emotional, and social stressors on the astronauts must be monitored, along with other aspects of their health. The Health Maintenance Facility (HMF) will have the capability of providing preventive, diagnostic, and therapeutic assistance for significant psychiatric and interpersonal problems which may develop. Psychological support will not end with the termination of the mission. Mental health professionals must be part of the team of medical personnel whose job will be to facilitate the transition--physical and mental--from the space environment back to planet Earth. This paper reviews each phase of mission planning for Space Station Freedom and specifies those factors that may be critical for psychological health maintenance on extended-duration space missions.  相似文献   

2.
This paper investigates the psychological implications of long duration spaceflight. Initial psychological problems associated with a heavy workload were identified during Skylab missions. Since then, most of our knowledge of psychological problems has come from experience onboard Russian spacecraft. Noted problems include anxiety, boredom, crew interactions, problems associated with isolation and confinement, and others. Efforts to alleviate or prevent these problems are discussed, as well as comparisons to similar environments such as arctic regions or submarines. As the U.S. participates in longer space missions, it will be wise to study psychological issues and to learn from our Russian counterparts.  相似文献   

3.
以我国载人航天飞行任务为背景,针对历次任务中USB测控网使用上出现的测站任务准备时间过长、与其他任务测站使用相冲突、测站使用效率不高等问题,在统计和分析实战任务数据的基础上,给出了一个载人航天飞行任务USB测控网优化配置的可行性方案,并提出了任务中选择测站的原则和测站配置确定流程,以期能够在今后的任务中更为合理地分配有限的USB测控网资源,提高其使用效率。  相似文献   

4.
将气动磁镜聚变概念拓展到空间推进器应用,分析了不同等离子体密度和氢推进剂质量流率下聚变推进器的比冲和推力变化范围,理论计算表明其比冲可达10 000 s以上,推力最高可达几十牛。在此基础上,进一步采用气动磁镜聚变推进器对地火转移任务进行了数值仿真。假设推进器初始质量为100 t,仿真结果表明:当飞行时间在282.42~639.76 d变化时,剩余质量从88.59 t提升至98.24 t。相关分析表明基于气动磁镜的聚变空间推进器通过调节比冲和推力组合方式,可以很好地满足未来火星载人和货运任务对飞行时间和有效载荷份额的不同需求,是未来高性能空间推进器发展的一种候选方案。   相似文献   

5.
Energy and power     
Energy sources for aerospace systems include electrochemicals, mechanical rotation, solar illumination, radioisotopes, and nuclear reactors. Energy is converted to power with engines, turbines, photovoltaics, thermoelectric and thermionic devices, and electrochemical processes. Although some early spacecraft flew with battery power, for longer flights the choice has been either solar or nuclear. Manned spacecraft must have power for the total mission duration including boost into orbit, on-orbit, and subsequent re-entry. Batteries are too heavy for extended manned space missions; tradeoff study alternatives range from radioisotope heated thermionic converters to hyperbolic-fueled engines. Arrays of solar cells are the obvious choice for powering space stations and for other extended-duration missions. This article emphasizes developments for space and airplane power systems. Enabling technologies are described along with significant spin-offs and future systems  相似文献   

6.
基于遗传算法的无人机协同侦察航路规划   总被引:7,自引:0,他引:7  
无人机将成为侦察卫星、有人驾驶侦察机的重要补充与增强手段 ,成为未来战场上广泛应用的一种侦察工具。为了提高无人机 (UAV)的侦察效率 ,在执行侦察任务前必需规划设计出高效的无人机侦察飞行航路。针对这一问题 ,本文提出了一种侦察效率指标评估的计算方法 ,解决了航路规划中的侦察效率量化问题。考虑在大范围任务区域内进行侦察航路优化存在计算的复杂性和收敛性等问题 ,本文采用遗传算法对侦察航路进行了优化处理。通过该方法得到的侦察航路可以有效地提高无人机的侦察效率。  相似文献   

7.
针对空间站在轨运营出现突发任务的情况,提出一种基于启发式规则的任务重规划方法,满足了方案重规划的快速响应需求。根据任务执行的连续性特点和冲突状态,建立了空间站突发任务规划领域模型。考虑重规划过程中任务包含活动间复杂约束关系传播的影响,提出了时间回溯迭代冲突化解策略,同时依据任务执行时间间隔,提出针对间隔插空的时间冗余启发式规则。基于时间回溯迭代冲突化解策略和时间冗余启发式规则,对原任务执行计划进行实时重规划,实现了突发任务的快速响应。应用算例分析表明,提出的重规划方法可以成功地满足空间站突发任务规划需求,实现实时更新空间站在轨任务执行详单的目的。  相似文献   

8.
The human radiation environment for several short-duration stay manned Mars missions is predicted using the Mission Radiation Calculation (MIRACAL) program, which was developed at NASA Langley Research Center. This program provides dose estimates for galactic cosmic rays (GCR) and large and ordinary solar proton flare events for various amounts of effective spacecraft shielding (both operational and storm shelter thicknesses) and a given time history of the spacecraft's heliocentric position. The results of this study show that most of the missions can survive the most recent large flares (if they were to occur at the missions' perihelion) if a 25 g/cm2 storm shelter is assumed. The dose predictions show that missions during solar minima (when solar flare activity is the lowest) are not necessarily the minimum dose cases, due to increased GCR contribution during this time period. The direct transfer mission studied has slightly lower doses than the outbound Venus swingby mission [on the order of 10-20 centi-Sieverts (cSv) lower], with the greatest dose differences for the assumed worst case scenario (when the large flares occur at perihelion). The GCR dose for a mission can be reduced by having the crew spend some fraction of its day nominally in the storm shelter (other than during flare events).  相似文献   

9.
The present investigation points out the potential of continuously propelled spacecraft for piloted Mars missions and compares them to impulsive propulsion (chemical and nuclear thermal) and ballistic trajectories. Although the results are related to piloted Mars missions, the stated issues raised hold true for a broad range of space missions. It is demonstrated that the use of impulsive propulsion leads to inflexible missions and may result in long total mission durations. Meanwhile, the use of continuous electric propulsion not only guarantees short total mission durations of Mars missions with moderate masses but also results in highly flexible missions. These criteria can be met with a continuous electric propulsion system that provides a thrust level of 100 N and 3000 s of specific impulse. Great potential lies in electric hybrid thrusters. The high-power, two-stage hybrid plasma thruster TIHTUS is currently being developed at the Institute of Space Systems (IRS). Its technology including preliminary laboratory testing results are presented.  相似文献   

10.
赵思浩  郭佩  张伟 《载人航天》2014,(2):173-177
载人航天器可以利用北斗卫星导航系统实现自主导航定位和相对测量以支持轨道确定和交会对接任务。为了评估当前星座条件下北斗卫星导航(区域)系统对中国载人航天器的服务能力,建立了当前北斗卫星导航(区域)系统的星座仿真场景。利用载人航天器轨道参数,对其轨道处北斗区域星座的覆盖特性和服务能力进行了仿真,分析了可以用于载人航天器绝对定位和相对定位的时间长度、可见卫星情况、位置精度因子等特性。分析结果表明,在载人航天轨道的一些持续时间段内,航天器可以利用北斗(区域)系统完成绝对和相对定位功能。  相似文献   

11.
为适应我国载人航天任务的新特点,有效支持空间站量化风险评价工作,调研了美国国家航空航天局(NASA)载人登月、国际空间站、航天飞机等载人航天项目的概率风险评价(PRA)工作,对比分析了PRA方法在不同载人航天项目中的应用效果。在此基础上,针对我国空间站工程的特点,初步提出了基于PRA的空间站工程量化风险评价方案与工作思路,对该方法在我国空间站实施所存在的问题进行了分析,并在方法规范、数据收集等方面提出了工作建议,为我国空间站量化风险评估工作提供技术支持。  相似文献   

12.
宽波束中继技术在空间站任务中的应用研究   总被引:2,自引:0,他引:2  
针对航天器现有窄波束中继终端天线在姿态快速变化及姿态异常条件下提供测控支持的局限性,提出了利用宽波束中继技术提供测控通信支持的方案。基于宽波束中继天线性能、天地链路性能对测控通信支持的影响分析,提出了改善链路性能的优化方案。结合空间站任务载人航天器各阶段测控通信支持的特点,分析了宽波束中继在入轨段、长期运行段和返回段的应用。分析结果表明:宽波束中继可为载人航天器从海南发射场发射时的入轨提供测控支持,也可为载人飞船返回提供测控支持。  相似文献   

13.
载人航天轨道大气密度模式修正研究   总被引:1,自引:0,他引:1  
热层大气密度模式的误差,是影响载人航天定轨精度的关键因素.分析载人航天工程所用Jacchia、MSISE、DTM三类大气密度模式的误差特点,通过比较精度和稳定性,基于现有空间天气参数,选取MSISE模式作为基础模式.研究利用星载加速度计数据反演载人航天轨道大气密度的方法,以验证我国载人航天轨道实测数据的精度;同时利用天宫一号以及神舟二号、三号、四号实测密度数据,以及相应的航天测控数据,分析模式误差与地方时、纬度和高度因素之间的关系,讨论建立合适的三维误差库来存储模式误差的方法,研究平均误差修正法和加权误差修正法,建立NRLMSISE-00的误差修正模式.修正结果应用于交会对接任务,与完全不修正时模式平均11.44%的误差相比较,两种修正方法的误差均明显减小,分别为5.41%和4.99%;其中平均误差修正法和加权误差修正法在未来1天、2天、3天的修正结果的误差分别是4.06%、3.73%,6.06%、5.78%,6.13%、5.72%,表明提前1天的修正效果最好;同时比较累积1-5天的误差库滑动也可以看出,误差库累积1天的效果相对较好;比较两种方法的预测效果显示,加权误差修正法优于平均误差修正法.研究表明基于三维误差库的模式修正方法显著提高了载人航天轨道大气密度预测精度,可为交会对接等载人航天任务提供技术支持.  相似文献   

14.
This article is an interview with U.S. astronaut Norman Thagard. He was on the Russian Mir 18 mission. Launched to the space station from Baikonur on March 14, 1995, he returned to Earth on the Shuttle 115 days later. With the completion of that mission, Thagard holds the U.S. record for the most time spent in space. Topics of discussion during the interview include: the cultural isolation faced by an American astronaut on a Russian space facility; the physiological and psychological effects of long-duration space flight; the problems of loss of bone and the radiation environment; readaptation to gravity on Earth; and, recommendations to the designers of the Alpha station.  相似文献   

15.
Risk-based technology portfolio optimization for early space mission design   总被引:1,自引:0,他引:1  
The successful design, development, and operation of space missions requires informed decisions to be made across a vast array of investment, scientific, technological, and operational issues. In the work reported in this paper, we address the problem of determining optimal technology investment portfolios that minimize mission risk and maximize the expected science return of the mission. We model several relationships that explicitly link investment in technologies to mission risk and expected science return. To represent and compute these causal and computational dependencies, we introduce a generalization of influence diagrams that we call inference nets. To illustrate the approach, we present results from its application to a technology portfolio investment trade study done for a specific scenario for the projected 2009 Mars MSL mission. This case study examines the impact of investments in precision landing and long-range roving technologies on the mission capability, and the associated risk, of visiting a set of preselected science sites. We show how an optimal investment strategy can be found that minimizes the mission risk given a fixed total technology investment budget, or alternatively how to determine the minimum budget required to achieve a given acceptable mission risk.  相似文献   

16.
在载人航天工程交会对接任务中,基于对载人飞船推进剂剩余量在轨实时高精度测量需求的背景,采用理论分析和试验验证相结合的方法,研究了剩余量直接在轨测量技术原理、影响测量精度的因素及解决措施等问题。研究表明,在轨推进剂剩余量直接测量系统方案具有易于实现,测量精度高,同时能够实时、直观反映系统中各贮箱推进剂消耗情况等特点。  相似文献   

17.
针对交会对接任务目标飞行器与追踪器轨道运行特性,综合考虑规避策略计算方法与工程实际相结合的问题,提出高度规避、时间规避以及与正常轨控相结合的碰撞规避策略计算方法等三种空间目标碰撞规避策略计算方法.高度规避计算方法采用了Lambert飞行原理,用简化二体开普勒模型取代高精度轨道预报方法,迭代求解规避机动速度增量,实现了通过约束过交点与目标径向距离差得到速度增量的最优解;时间规避计算方法通过轨道周期与速度增量的关系,实现了通过约束过交点与目标的时间差得到速度增量的最优解;与正常轨控相结合的碰撞规避策略计算方法,在正常控制考虑冗余控制量的基础上,对控制策略的控制开始时间或沿迹方向的速度增量进行较小的修正,使两者通过碰撞点的时刻或径向距离错开,达到碰撞规避的目的,该方法不仅可以节省燃料、而且对任务的影响较小.通过对三种空间目标碰撞规避策略计算方法仿真分析结果表明,完全适用于交会对接任务,可为我国载人航天任务飞行安全提供技术保障.  相似文献   

18.
Essential design factors and system characteristics are explored for integration of large power systems into manned space stations. The impact of the type of power system selected upon the space station is outlined, as is the impact of the mission requirements upon the selection of power systems. Criteria for resolving the selection/application/ integration problems are provided. Comparisons between systems are based on recently defined space-station models for 90-day to five-year mission durations in the 1970' s, with four-to nine-man crews. Power systems encompass power levels from 3 to 50 kWe and include solar cell/battery. fuel cell, hybrid fuel cell/solar cell, radioisotope, and nuclear reactor systems. Thermoelectric, Brayton cycle, organic Rankine, and liquid-metal Rankine power conversion systems are considered for the nuclear energy sources. Both rigid and roll-out photovoltaic array configurations are analyzed with respect to the solar energy source.  相似文献   

19.
Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth’s surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.  相似文献   

20.
Conclusion The lunar photography missions have included flyby, impacter, lander, and orbiter spacecrafts. These missions have provided photographs of the far side of the moon and a ten-fold increase in frontside resolution plus higher resolution of selected frontside areas. The resolutions which have been achieved vary from 1 m for the Lunar Orbiter to 1/2 m for the impacting Ranger to millimeters for Luna-IX and the Surveyors. The return from these missions have resolved much of the mystery surrounding the moon.The prime objective of the U.S. photographic missions has been the support of the Apollo-manned lunar landing program. The Ranger program, the Surveyor program, and the Lunar Orbiter program provided a logical progression in the utilization of a developing space exploration technology. These programs have provided the required information and have confirmed that the Apollo landing vehicle design is compatible with the conditions to be experienced on selected areas of the lunar surface.The future manned landing missions can be expected to provide additional lunar photography. Since the astronauts can be more selective in their photography, even more outstanding and informative results should be achieved. The addition of movies and even live television coverage will permit earth-based man to share more directly in the manned exploration of the moon.The unmanned photographic exploration of the moon has provided much of the technology required for similar missions to the planets. The U.S. Mariner-IV was the first successful mission to obtain close-up photographs of the planet Mars. It can be expected that both the U.S.A. and Russia will try for further photographic successes in the exploration of our solar system.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号