首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
旋转汽蚀是诱导轮汽蚀不稳定现象中常见的一种,可导致叶片承受循环载荷,引发轴振动,对涡轮泵工作的可靠性造成威胁.本文对一个3叶片诱导轮进行了考虑汽蚀的定常和非定常流动计算,在特定的汽蚀数范围内,在非定常流动计算结果中观察到了旋转汽蚀现象.然后,对一典型计算结果,分析了旋转汽蚀发生时叶片气穴尺寸以及攻角随时间的变化情况.结果表明,叶片上的气穴尺寸与下游相邻叶片的攻角的变化趋势大致相同,但是在气穴尺寸的最大值点附近的变化趋势相反.此外,在叶片气穴尺寸的一个变化周期内,气穴尺寸的变化率与其攻角的变化趋势不完全吻合.  相似文献   

2.
液体火箭发动机涡轮泵内非定常流体力主要通过流体—壳体以及流体—转子—支承—壳体两条传递途径激励壳体发生振动,对发动机的安全可靠性造成威胁。为获得流体激励下涡轮泵壳体振动特性,建立了两条流体力传递途径下涡轮泵壳体振动响应定量预测方法,利用发动机热试车结果对预测方法的精度及可靠性进行了验证。在此基础上获得了不同途径下涡轮泵壳体的振动特性。结果表明:所建立的涡轮泵流体激励壳体振动预测方法能够较好地预测壳体振动响应主导频率及幅值,主频幅值误差小于13.85%;壳体的最大振动能量源自于泵内动静干涉非定常流动与壳体结构之间的相互作用;流体—壳体途径是涡轮泵流体激励壳体振动的主要来源,其引起的壳体振动响应幅值相比流体—转子—支承—壳体传递途径大2个量级以上。  相似文献   

3.
侯杰  于海力  杨敏 《火箭推进》2014,40(6):19-23
诱导轮是用来改善高速泵汽蚀性能的重要部件。为了研究诱导轮设计参数对高速泵汽蚀性能的影响,对一台卧式高速泵的诱导轮分别进行了3种方案的设计,并且对安装了每一种设计方案诱导轮的卧式高速泵都在试验室进行了相应的汽蚀试验,试验结果显示通过合理设计诱导轮参数可以显著提高高速泵的汽蚀性能。为了进一步研究诱导轮内部液体的流动状态,采用雷诺时均方法,对诱导轮内部的流场进行数值模拟,研究了诱导轮叶片工作面上相对速度分布及压力分布情况。依据数值模拟和试验结果,提出了对于本结构的高速泵诱导轮设计时诱导论的扬程系数应小于0.15,进口液流冲角要在合理范围内选取,不能取值过小。在合理的设计条件下,高速泵配备相等螺距诱导轮可以达到优良的汽蚀性能。  相似文献   

4.
唐飞  李家文  李永  周成 《火箭推进》2013,39(2):29-34,45
诱导轮是液体火箭发动机中提高涡轮泵性能的关键部件,而旋转汽蚀是引起诱导轮故障的原因之一。低温液体发生汽蚀时会产生大量的潜热,对汽蚀流动产生重要的影响。利用基于Rayleigh—Plesset方程的混合流体模型,并考虑了汽蚀热力学效应,对诱导轮二维叶栅中的低温旋转汽蚀现象进行了数值分析。计算结果表明,考虑热力学效应时,产生旋转汽蚀的入口压力值下降;低温条件下的温度变化对超同步旋转汽蚀没有影响,而对次同步旋转汽蚀影响显著。  相似文献   

5.
在带诱导轮离心泵试验中,当泵流量很小时,泵进出口压力均出现了幅值未发生衰减的低频振荡,这与高速离心泵的频率特征形成对比,表明泵-管路系统内发生了自激振荡。泵在小流量下工作时,会出现与主流区强烈作用的回流区,该反向回流在诱导轮叶片工作面上形成漩涡并随诱导轮一起旋转,引起主流液体的静压降低及空泡体积的周期性变化,由此产生了汽蚀自激振荡。利用空泡动力学模型对低频汽蚀自激振荡特性进行计算,得到了带诱导轮离心泵-管路系统的振荡频率、进口压力及流量的动态特性、流量-进口压力极限环等。结果表明,计算的汽蚀自激振荡特性与试验值接近,汽蚀自激振荡数学模型合理可行;泵转速及进口管长度越小,泵进口压力和流量越大,汽蚀自激振荡的频率就越大。  相似文献   

6.
针对某流量工况变比20的高速离心泵,为提升其变工况抗汽蚀性能,提出了缝隙诱导轮方案。分别进行了常规变螺距诱导轮和缝隙诱导轮泵汽蚀仿真计算和水力性能试验,分析了多工况泵的汽蚀断裂特性和汽蚀气泡分布等流场特征,获得了两种诱导轮泵多工况汽蚀性能和外特性。结果表明,与常规诱导轮相比,缝隙诱导轮拓宽了高速离心泵稳定工作工况范围,小流量工况泵的抗汽蚀性能明显提升,额定工况汽蚀性能相当;缝隙诱导轮小流量工况效率略有提升,大流量工况泵效率和扬程均有降低。  相似文献   

7.
唐飞  李家文 《火箭推进》2011,37(1):34-39
诱导轮是现代液体火箭发动机中提高涡轮泵性能的关键部件,它可以在局部发生汽蚀的情况下工作,但是汽蚀所诱发的各种非定常不稳定现象会影响火箭发动机涡轮泵的性能、稳定性和寿命.本文利用基于Rayleigh-Plesset方程的混合流体模型,对诱导轮二维叶栅中的汽蚀不稳定现象进行了数值分析.结果表明,在一定汽蚀数范围内诱导轮容易...  相似文献   

8.
某型号液体火箭发动机用高速诱导轮离心泵存在抗汽蚀性能偏低的问题,而液体火箭发动机对泵的抗汽蚀性能有特别严格的要求,其直接影响发动机的性能和可靠性。为获得更高的效率,按照常规泵设计经验选取较大的诱导轮出口角,而理论分析此时诱导轮和离心轮的能量匹配不是最佳,不能获得较好的汽蚀性能。经过理论分析,提出降低诱导轮出口角的改进方案,并对诱导轮离心泵流场进行数值模拟,并在试验室进行了试验验证。仿真及试验表明在相同叶轮外形尺寸条件下,提出适当降低诱导轮出口参数的设计方法,虽然泵的扬程和效率略有降低,但泵的抗汽蚀性能得到大幅提高,该方法提高泵的抗汽蚀性能是可行的。  相似文献   

9.
提高液体火箭发动机诱导轮汽蚀性能的研究   总被引:1,自引:0,他引:1  
唐飞  李家文  李永  周成 《火箭推进》2013,39(3):44-49,57
诱导轮叶型的设计应尽可能减少静压降,并保证叶片的负荷分布均匀,减轻叶片的汽蚀破坏。利用CFD技术分析了阶梯壳体和叶片打孔对诱导轮叶片负荷的影响,计算结果表明这些措施都可以降低叶片前缘的负荷。相比较于叶片打孔,阶梯壳体更加有助于降低叶片前缘的负荷,在一定程度上提高诱导轮汽蚀性能。最后,通过基于混合模型的汽蚀计算验证了上述结论的正确性。  相似文献   

10.
在泵的设计中,间隙的尺寸控制向来都是一个难题,过大会损害泵的性能,过小则有发生碰磨的可能。针对关键间隙对泵性能影响的问题,利用ANSYS CFX软件,采用高精度六面体网格,应用SST、湍流模型和Rayleigh-Plesset汽蚀模型,对具有不同间隙的某型氧化剂泵进行了流场仿真,获得了间隙对泵水力性能和抗汽蚀性能的影响规律,并且从压力分布、气相份额分布和速度场等方面分析了产生这种影响的原因。结果表明:浮动环间隙越小,泵效率越高;诱导轮叶顶间隙越小,泵的抗汽蚀性能越高。泵的抗汽蚀性能随诱导轮叶顶间隙减小而提高的原因在于:叶顶回流强度减弱导致能量损失减少,离心轮入口静压升高。  相似文献   

11.
某发动机涡轮泵转子高温超速/疲劳试验研究   总被引:2,自引:0,他引:2  
涡轮转子是输送液氢/液氧推进剂的关键组件,其运行状态的好坏将直接影响发动机的性能和可靠性。超速/疲劳试验是转子质量控制、极限强度考核的一种试验方法。针对某发动机涡轮转子开展了高温超速/疲劳试验研究,首先研究了试验用转接器的设计方法,然后基于有限元方法建立了某液体火箭发动机涡轮泵转子高温超速试验的有限元模型,研究了温度对涡轮泵转子振型及临界转速等动特性的影响,分析了转子启动升速过程中常温和高温的振动幅值与支撑应力变化规律。在理论研究基础上开展了转子高温超速/疲劳试验研究,分析了高温状态下涡轮泵转子系统启动升速过程振动幅值的变化规律,研究了温度对涡轮泵转子超速动特性的影响规律。  相似文献   

12.
液氧/煤油发动机煤油预压涡轮泵技术   总被引:1,自引:0,他引:1  
液氧/煤油发动机采用独立的预压涡轮泵装置可减小推进剂组元贮箱的增压和提高主泵的转速,从而提高主泵的效率并降低其结构质量。以煤油预压涡轮泵为例,阐述了预压泵结构特点、轴承冷却系统及轴向力平衡装置。为提高预压泵的抗汽蚀性能和扬程.提出了变螺距变轮毂诱导轮方案,分析了流量系数、螺距及轮毂形状,并对诱导轮内流场进行了数值模拟,获得了其内部流场结构。水力试验结果表明,煤油预压泵性能稳定.在预压泵额定流量下,可使煤油主泵的入口压力提高约0.4MPa,与设计值相符。  相似文献   

13.
张萍 《火箭推进》2003,29(6):23-25
为了进行液氧/煤油发动机预压涡轮泵的水力性能试验,在充分论证的基础上,完成了液氧/煤油预压泵水力试验系统的设计建造.试验系统建成后进行了预压泵的性能试验、汽蚀试验及预压泵与预压涡轮的匹配性试验,达到了预期的试验目的,为预压涡轮泵的设计、改进提供了有效的依据.  相似文献   

14.
为研究分流叶片诱导轮及变螺距诱导轮对离心泵水力性能及汽蚀性能的影响,对具有前置诱导轮的高速离心泵进行了试验和数值模拟。外特性试验表明,两种前置诱导轮对高速离心泵效率的影响均不显著,前置分流叶片诱导轮的离心泵扬程相对于前置变螺距诱导轮有显著下降。汽蚀试验表明,小流量工况下前置分流叶片诱导轮的离心泵抗汽蚀性能较优,大流量工况下前置变螺距诱导轮的离心泵抗汽蚀性能较优,其余工况下两者的抗汽蚀性能相当。仿真结果表明,大流量工况下分流叶片诱导轮扬程较低,不能满足离心轮进口能量需求,致使前置分流叶片诱导轮的离心泵汽蚀性能变差。  相似文献   

15.
马杰伟 《火箭推进》2004,30(2):54-58
一项减少重复成本的主要方法就是限制零件数量和简化机械结构.涡轮泵在火箭发动机总成本中占有很大一部分,大约是30%,因此,理应对涡轮泵进行设计简化.对于可贮存的液氧/烃或者液氧/甲烷火箭发动机,把涡轮泵设计成一轴化是有价值的.然而,对于液氧/液氢发动机,由于两推进剂密度之间存在着巨大的差异,因此,最佳方案就是燃料泵和氧化剂泵分别采用不同的转速驱动.在这种方案中,可以仅用一个涡轮来带动液氧和液氢泵,不过两泵之间要通过齿轮来传递转速,例如HM7或RL10发动机就是这样的结构.但是,齿轮在低温环境中的工作是不可靠的,此外,成本和重量也是问题,带有齿轮的涡轮泵适用于低推力发动机,为低功率涡轮泵.目前,低温火箭发动机推力室通常采用两个独立的涡轮泵来供应推进剂,一个涡轮泵是供应液氢,另一个供应液氧(某些俄罗斯的发动机除外).可以采用正反转涡轮,使得氧化剂泵和燃料泵处于单一壳体内.该正反转涡轮设计的约束条件如下:每个转子必须按所需转速驱动相应的泵;每个转子必须传递驱动泵的功率;必须对轴向载荷进行监测,以免轴向推力轴承过载.设计的自由度包括转子半径和涡轮的压力叶栅.本文给出正反转涡轮一个简单的一维理论,考虑了每个转子半径的不同,并对一组同一规格的两个轴流涡轮与正反转涡轮进行了比较.  相似文献   

16.
在离心泵前加置诱导轮是保证离心泵获取优越汽蚀性能的关键途径。针对某型号液体火箭发动机诱导轮,采用CFD技术研究了轮毂型线形状对诱导轮汽蚀性能和扬程的影响。结果表明,在具有相同入口流动状态条件下,改变诱导轮轮毂型线形状可使诱导轮产生不同扬程。  相似文献   

17.
1994年2月4日,日本成功地发射了第一枚 H—Ⅱ运载火箭。这次发射成功预示着日本的宇航事业美好的发展前景。H—Ⅱ运载火箭将做为日本九十年代到下世纪初的主要空间运载系统。它最显著的技术特点主要体现在它的第一级发动机 LE—7和第二级发动机 LE—5A。这两种发动机均以液氢为燃料,液氧为氧化剂。独特的发动机设计特点,使得 H—Ⅱ运载火箭跻身于世界航天技术行列中并成为其中的佼佼者。LE—7和LE—5A 是以 LE—5发动机的技术为基础发展起来的。LE—5发动机是完全依靠日本技术研制出的第一种低温发动机,并成功地应用在 H—Ⅰ运载火箭的第二级上。本文着重介绍日本低温发动机研制的历史,展示这些发动机独特的设计以及研制中所遇到的技术问题。  相似文献   

18.
窦唯  刘占生 《火箭推进》2012,38(4):17-25
为获得转子振动特性,针对液体火箭发动机涡轮泵转子系统建立了其在密封流体激振作用下的弯扭耦合动力学模型。通过数值仿真和试验研究了涡轮泵转子系统弯扭耦合振动的动力学特性,结果显示在密封流体激励作用下弯扭耦合振动的非线性特性显著。还研究了偏心距对涡轮泵转子系统弯扭耦合振动的影响。本研究可为液体火箭发动机涡轮泵转子的结构设计、诊断与维护提供可靠信息。  相似文献   

19.
1985年建于日本国家航天试验室角田研究中心的高压液氧涡轮泵试验设备,已成:叻地对用于 LE-7、LE-7A 发动机上的高压液氧涡轮泵进行了500多次各种试验,解决了结构设计中的两个技术难题.首先,必须将燃气发生器产生的工作气体控制在一定温度内,以防止涡轮叶片熔化或被损坏,即使在燃气发生器点火和关闭时也要如此。其次,必须将大量的涡轮废气安全地排放,避免由于涡轮废气直接排入大气而产生的大面积的噪声和振动。本文阐述该设备的设计方法和特点。  相似文献   

20.
大功率、高转速、高扬程涡轮泵振动分析与减振研究   总被引:1,自引:1,他引:0  
比功率和能量密度都很高的火箭发动机涡轮泵,工作时引起振动的基本原因之一是较大的损失功作用在质量较小的产品上,减振必须是以提高组件的效率降低其振动比载荷为首选措施,同时改变其刚度与强度。组件中动、静件叶片之间的能量转换是引起流体压力脉动的主要原因,避免压力脉动的频率与转子转动的倍频耦合,特别是较低的倍频,是降低产品耦合振动的关键。流体密封间隙内的激振力对产品振动的影响很复杂,但激振力的主频与转子的某一固有频率接近时,将会对转子激起很大的振动,改变密封间隙内流体激振力的频率是抑制流—固耦合振动的主要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号