首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
端壁采用孔式抽吸对扩压叶栅气动性能的影响   总被引:4,自引:4,他引:0       下载免费PDF全文
为明晰孔式附面层抽吸技术对压气机叶栅气动性能的作用效果,实验研究了在端壁不同位置设置抽吸孔时对大折转角扩压叶栅壁面流谱、出口二次流及损失的影响。研究结果表明,端壁抽吸改变了原型叶栅内部流场结构,角区分离起始点前进行附面层吸除可有效延缓通道涡的形成,降低叶栅损失;分离起始点之后角区分离已经充分发展的位置不宜布置抽吸孔;相比较抽吸槽,采用抽吸孔可以通过更少的抽吸量达到相同程度地对叶栅流动性能的改善。   相似文献   

2.
孔式抽吸对带间隙高负荷压气机性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
实验研究了端壁孔式附面层抽吸对带间隙的高负荷直列叶栅流动特性和气动性能的影响,通过三种附面层抽吸方案与原型方案的对比分析,探讨了附面层抽吸抑制间隙流动、减小损失的机理。对叶片表面和下端壁进行了墨迹流动显示,并利用五孔探针对叶栅出口气动参数进行了测量,对比分析了叶栅流道内的流场特征和损失分布。结果表明,在间隙内布置抽吸孔能有效降低间隙流动动能,削弱间隙流与主流之间的相互掺混作用,减小因间隙流动引起的端壁区域流动分离,从而达到对三维流动分离的抑制,有效降低损失,且最大降幅达16.7%;间隙流动引起的流动分离和损失在流道中占主导地位,尽管在端壁沿周向合理布置抽吸孔能在一定程度上抑制近端壁的附面层或二次流发展,但这种局部效应仍不能显著改善叶栅的整体性能;端壁上不合理的抽吸控制策略反而可能影响主流的正常流动,导致损失增加,其中方案4损失增加了约3%。  相似文献   

3.
基于常规跨声速扩压叶栅吹风试验结果确定合理抽吸位置,并在此基础上对该叶栅进行多种工况的附面层抽吸试验,分析附面层抽吸作用下叶片表面马赫数、出口尾迹与总压损失系数的变化。结果表明:开设抽吸缝对常规跨声速叶栅原有流场结构的总体影响较小,但当抽吸缝位于马赫数峰值位置时,会对下游流动产生一定扰动。在适当位置抽吸能抑制跨声速叶栅表面流动分离,且只有抽吸量达到一定数值后,附面层抽吸作用才会对叶栅气动性能起到明显正效果。当抽吸量达到0.87%时,该跨声速叶栅总压损失系数降低了7.8%。  相似文献   

4.
吸附式叶栅抽吸流与激波相干性研究   总被引:2,自引:1,他引:1  
以某高负荷静子叶栅为研究对象,应用数值模拟方法分析了其在不同工况下附面层拓扑结构特点,针对该分离现象实施附面层抽吸,分析了激波与附面层相干过程,探讨了抽吸流与槽道激波的相干作用.结果表明:(1)在有激波、无抽吸条件下,附面层发展一般会经历分离泡产生、破碎、附着叶片表面的过程之后进入大分离状态;(2)吸力面开孔进行附面层抽吸,在一定程度上可以提高静压比,同时损失变化不大;(3)在激波后实施附面层抽吸,会使激波向下游漂移,其后附面层分离更为严重,因此在槽道存在激波时,若实施附面层抽吸,应该预先考虑抽吸气流与激波的相互干涉作用.  相似文献   

5.
何天喜  王强 《航空动力学报》2018,33(9):2278-2284
以一种CARET(后掠双斜切双压缩面)进气道为研究对象,设计喉道附面层抽吸槽以控制流动分离。采用CFD数值计算软件对进气道在设计点工况下(马赫数为2.0)下内、外流场进行计算,以总压恢复系数和进气道出口总压畸变为评价指标分析不同抽吸方案的效果。结果表明:喉道附面层抽吸能够稳定结尾正激波,削弱激波/附面层干扰,抑制流动分离,显著改善流场,提高总压恢复系数,减小出口畸变;喉道段抽吸槽位置靠前能够明显降低出口畸变;随着抽吸量的增大,附面层抽吸对进气道内特性性能提升的贡献越来越小。   相似文献   

6.
跨声速叶栅叶表附面层抽吸效应试验   总被引:4,自引:3,他引:1  
以某跨声速、吸附式叶栅为研究对象,在暂冲式叶栅风洞上对其进行了多个状态的吹风试验,对比分析了在通道存在激波条件下,激波前、后抽吸对叶栅性能以及附面层的影响效应.研究结果表明:激波前抽吸使得抽吸缝局部马赫数增大,恶化叶栅性能;激波前抽吸对于来流高亚声和超声速的叶栅损失系数影响趋势一致,随着抽吸系数增加损失系数增加,并且当抽吸系数大于0.2%时,损失系数增加较快;波后抽吸可明显改善叶栅性能,抽吸量越大,抽吸正效应越明显,相比于未抽吸条件,抽吸系数为0.8%时损失系数降低8%、总压恢复系数提高5%.   相似文献   

7.
郭爽  陆华伟  宋彦萍  吴锤结 《推进技术》2013,34(11):1466-1473
为探明附面层抽吸技术对压气机叶栅气动性能的影响及其与栅内旋涡结构的关联,通过十个横截面的实验测量结果研究了高负荷压气机叶栅抽吸端壁附面层前后的主要旋涡结构以其对应损失的演变过程。研究对象为矩形低速扩压叶栅,来流马赫数约为0.23。研究结果表明,端壁附面层的变化对叶栅端区的主要旋涡发展过程影响显著。在原型方案中,壁面涡、尾缘脱落涡的演变过程对应着较高的流动损失,通道涡自身产生的损失较小,主要起到向远离端壁的方向输运低能流体的作用;在流向槽吸气方案中,壁面涡和尾缘脱落涡因端壁附面层径向迁移及角区分离受到抑制而被明显削弱;而来流附面层抽吸方案则最为有效地控制了通道涡的演变过程。   相似文献   

8.
跨声速叶栅抽吸流、激波以及分离流相干效应   总被引:3,自引:3,他引:0  
王掩刚  任思源  牛楠  刘波 《推进技术》2011,32(5):664-669
以某高负荷、跨声速压气机叶栅为研究对象,应用数值模拟手段探讨通过抽吸控制激波从而控制附面层发展的可行方法。研究结果表明:随着抽吸量的增加吸力面马赫数峰值提高,激波损失增加,同时使得吸力面马赫数峰值点位置后移,附面层分离减弱,分离的减弱所导致的总压恢复系数增加量要远大于激波强度增加所导致的总压恢复系数减小量;抽吸对叶栅性能改善存在一个最佳抽吸量1.2%;在保证叶栅静压压升不变的前提下,相对于未抽吸条件1.2%抽吸使得叶栅总压恢复系数提高10%,扩散因子降低18%,落后角减小5°;通道激波后实施附面层小流量抽吸不能有效改善附面层内部流动参数,当实现前缘入射斜激波投射点位于通道激波上游时,叶表附面层流动得到较大改善。  相似文献   

9.
抽吸对高超声速进气道起动能力的影响   总被引:14,自引:11,他引:14       下载免费PDF全文
袁化成  梁德旺 《推进技术》2006,27(6):525-528
对在不同抽吸开孔率下,某典型高超声速二元进气道二维流场进行了数值模拟,给出了高超声速进气道性能参数随抽吸开孔率的变化规律,研究了抽吸对高超声速进气道起动和再起动能力的影响,发现抽吸可以有效地降低进气道的起动马赫数,改善进气道的流动性能,提高进气道的总压恢复系数,但降低了压比,且开孔率越大,上述变化越明显;同时还发现抽吸能够减小高超声速进气道的迟滞回路曲线,大大降低进气道再起动马赫数,改善进气道再起动过程中的超压、超温问题。  相似文献   

10.
利用渗透边界模型分析三维内转式进气道启动性能   总被引:1,自引:1,他引:0       下载免费PDF全文
卫锋  贺旭照  杨大伟  秦思 《推进技术》2017,38(11):2439-2446
进气道抽吸区域一般包含大量抽吸孔,这些抽吸孔的网格前处理异常繁复、离散求解及CFD仿真困难。为避免这些问题,利用集成了渗透边界模型的数值仿真软件AHL3D模拟小孔抽吸,获得了小孔抽吸对三维内转式进气道Ma4~6内的启动性能的影响。结果表明:同等条件下,渗透边界与抽吸孔仿真的机体侧壁面压力曲线基本重合,且进气道喉部参数最大差别小于1.5%,说明利用渗透边界模型研究抽吸对进气道启动性能的影响具有可行性;边界层抽吸位于分离泡最高压力点附近时,可实现进气道宽马赫数范围(Ma4~5.5)的启动;Ma5条件下,开孔率在0.1左右,进气道实现启动,且启动后流量抽吸率低于1%;抽吸背压为6.5倍来流静压时,进气道实现启动,启动后流量损失几乎为0,压力分布规律与远场初始化得到的启动流场完全一致。  相似文献   

11.
给定不同型式的进口边界层,在两种不同亚音速条件下对一平面扩压静叶栅的弯叶片流场进行了数值模拟。结果表明弯叶片对扩压叶栅的改善的能力受进口边界层的特征影响。这种影响分为两个方面:(1)边界层厚度的影响和(2)边界层动量损失厚度的影响。边界层越厚或动量损失厚度越大,在低马赫数条件下弯叶片对吸力面角区密流增加越明显,从而更大程度地提高了端区的流动性能,降低了叶栅损失。在高马赫数条件下,若边界层越厚或动量损失厚度越大,角区密流虽变化不大,但因端区损失较大,其性能的提高会给叶栅总性能的改善带来较大的收益。   相似文献   

12.
具有无源控制空腔时正激波/湍流附面层干扰的数值模拟   总被引:3,自引:0,他引:3  
采用雷诺平均N-S方程和B/L代数湍流模型计算了具有无源控制空腔时正激波/湍流附面层干扰流场。计算与实验结果的比较表明,本文方法可较准确地预测激波结构、激波与附面层干扰区流动基本特征及波后流动分离状态、激波位置、波前马赫数等参数。   相似文献   

13.
不同边界层厚度下高马赫数进气道自起动过程研究   总被引:1,自引:0,他引:1       下载免费PDF全文
施欢  谢文忠  梁钢  金毅  靖建朋 《推进技术》2019,40(12):2684-2693
为了探寻入口边界层厚度变化对高马赫数进气道自起动性能的影响,对简化的二元高马赫数进气道的加速自起动过程进行数值仿真研究,分析了边界层厚度对自起动过程中流场波系结构变化和自起动性能的影响机制,获得了不同边界层厚度下的进气道自起动性能及主分离包高度的变化规律。结果表明:随着边界层相对厚度从0.05增加至0.3,进气道的自起动马赫数一开始保持不变,然后快速增大;相同主流条件下,不起动流场跨越主分离包无量纲压升和主分离包高度随边界层相对厚度的增大均变小;边界层动量损失厚度和跨越主分离包无量纲压升对进气道起动性能影响重大。  相似文献   

14.
为探讨高超声速进气道在低马赫数普遍存在的起动问题,采用等激波强度法设计了超燃冲压发动机二维混压式前体/进气道,给出了前体/进气道的几何尺寸,对所设计的进气道在设计状态、非设计状态的性能与流场进行了数值模拟,对低马赫数下进气道的起动问题进行了研究。研究表明:设计的进气道附加阻力较小,总压恢复系数较高,在低马赫数下通过附面...  相似文献   

15.
徐立功  姚久成  王奎 《航空学报》1993,14(5):241-246
利用激波管实验原理和实验技术,在截面为94 ×94mm~2的激波管实验段中,测量了自由流单位Re数单一变化时壁面边界层转捩Re数的变化规律。为此研制了一种可直接显示边界层从层流向湍流过渡全过程的热电模拟网络。根据大量测量结果,并以自由流单位Re数为自变量,整理出预测平板边界层转捩Re数的经验公式。  相似文献   

16.
基于LES方法的平板非定常激波/湍流边界层干扰研究   总被引:2,自引:0,他引:2  
潘宏禄  马汉东  沈清 《航空学报》2011,32(2):242-248
以高超声速发动机进气道湍流分离控制为应用背景,采用大涡模拟(LES)方法进行马赫数为3.0(唇口附近马赫数约为3.0)的激波/湍流边界层干扰(SWTBLI)流场机理研究.利用扰动循环引入的方法,先得到充分发展湍流场,然后根据斜激波关系式引入激波的方法进行激波/湍流干扰模拟.研究结果显示:充分发展湍流场在激波作用下产生逆...  相似文献   

17.
李季  罗佳茂  杨顺华 《推进技术》2019,40(8):1759-1766
为了解上游边界层抽吸控制和下游周期脉动反压作用下隔离段内流动特性,采用非定常数值模拟和理论分析相结合的方法,对来流Ma=2情况下的隔离段内激波串动态演化特性、激波串形态结构变化以及激波串演化迟滞现象进行了研究。结果表明,在脉动反压和边界层抽吸作用下,激波串在上游抽吸狭缝与下游隔离段出口之间周期振荡,振荡频率与脉动反压一致。在振荡过程中,首道激波串形态在规则反射与马赫反射以及马赫反射与弧形激波(包含正激波)之间相互转换。边界层抽吸将激波串固定在抽吸狭缝位置,有效提高了隔离段抗反压性能,脉动频率越大,可承受的瞬态反压峰值越大。在一个振荡周期内,激波串向上移动速度较向下移动更快,且在上下移动过程中形态变化存在迟滞现象。  相似文献   

18.
本文采用四阶精度紧密格式研究了壁面冷却和抽吸对超声速高超声速旋转圆锥三维边界层横流不稳定性的影响,最大M=7.5。数值结果证明:壁面冷却和抽吸对第一模式有稳定作用,但这一作用比二维边界层显著减弱,抽吸使第二模式增长率减小,冷却使第二模式增长率增大,不稳定频率升高;直到M=7.5可以用壁面抽吸使得因为壁面冷却而变得更不稳定的第二模式重新趋于稳定,但M数越高所需的抽吸量越大。  相似文献   

19.
针对超声速边界层/混合层组合流动,利用可压缩线性稳定性理论研究了流动的线性失稳特性。基本流场选取了具有不同速度特征的两股来流,采用双曲正切的混合层剖面叠加可压缩边界层自相似性解剖面构造。重点考察了混合层中心与壁面距离、对流马赫数等参数对组合流动稳定性特征的影响,其中壁面采用绝热壁面。混合层中心与壁面的距离为5~15倍的边界层厚度,混合层的对流马赫数为0.6~1.2。结果表明:该组合流动中存在独特的多重不稳定模态,并相互影响;且其不稳定模态随着壁面距离及对流马赫数的变化呈现出不同的主导行为。   相似文献   

20.
几何尺寸对高超声速进气道气动性能的影响   总被引:1,自引:0,他引:1  
王亚岗  袁化成  郭荣伟 《航空学报》2014,35(7):1893-1901
为了探索模型缩尺比对高超声速进气道气动性能的影响,对不同缩尺比的二元高超声速进气道开展了数值模拟研究,结果表明:随着缩尺比的增大,进气道流量系数、隔离段出口总压恢复系数和马赫数均逐渐增大,而静压比逐渐减小,且来流马赫数越高,上述参数变化幅度越大。由理论与数值模拟分析可知,上述现象主要是由于不同缩尺比下,进气道当地雷诺数不同,导致进气道附面层相对厚度变化,进而影响进气道气动性能。理论分析了进气道总压恢复系数与缩尺比的定量关系,就进气道而言,进气道进口处附面层相对厚度减小1%,隔离段出口总压恢复系数提高约0.7%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号