首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lettuce plants were grown utilizing water, inorganic elements, and CO2 inputs recovered from waste streams. The impact of these waste-derived inputs on the growth of lettuce was quantified and compared with results obtained when reagent grade inputs were used. Phytotoxicity was evident in both the untreated wastewater stream and the recovered CO2 stream. The toxicity of surfactants in wastewater was removed using several treatment systems. Harmful effects of gaseous products resulting from incineration of inedible biomass on crop growth were observed. No phytotoxicity was observed when inorganic elements recovered from incinerated biomass ash were used to prepare the hydroponic solution, but the balance of nutrients had to be modified to achieve near optimal growth. The results were used to evaluate closure potential of water and inorganic elemental loops for integrated plant growth and human requirements.  相似文献   

2.
The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.  相似文献   

3.
Catalytic combustion of inedible biomass of plants in ecological Life Support Systems (LSS) gives rise to gaseous oxides (CO2, NO2, SO2, etc.). Some of them are toxic for plants suppressing their photosynthesis and productivity. Experiments with "Bios-3" experimental LSS demonstrate that a decrease of photosynthetic productivity in a system with straw incineration can jeopardize its steady operation. Analysis of the situation by a mathematical model taking into account absorption parameters of the system in terms of toxic elements makes it possible to formulate requirements for the structure and operation of LSS to provide for its stability. Avenues for further investigation of the problem of toxic stability of LSS are proposed.  相似文献   

4.
Considerable evidence exists to support the hypothesis that human-generated wastes can be utilized as resources in crop production. In the waste mix from a Closed Ecological Life Support System (CELSS), the elemental resources are found mainly in the solid fraction. In order to make these resources available for crop growth, it is necessary to convert the solid wastes to either an aqueous or a gaseous phase. Incineration is one method for processing solid wastes to produce a gaseous fraction and a small solid fraction of ash. Evidence from literature provides a compelling case for a working hypothesis that plants can utilize the gases of incineration. Although uptake and utilization of inorganic elements in the aqueous phase is well established, the uptake and utilization of inorganic elements in the gaseous phase, with the exception of CO2 and O2, is not fully understood. This paper attempts to (a) summarize existing literature on uptake/metabolism of inorganic elements in the gaseous fraction, with the exception of CO2 and O2 and (b) develop a working hypothesis to predict the use of incineration flue gases by plants. Preliminary experimental findings on effects of carbon monoxide, a component of the flue gas, are also presented.  相似文献   

5.
An anaerobic reactor seeded with organisms from an anaerobic lagoon was used to study the degradation of inedible crop residues from potato and wheat crops grown in a closed environment. Conversion of this biomass into other products was also evaluated. Degradation of wheat volatile solids was about 25% where that of potato was about 50%. The main product of the anaerobic fermentation of both crops was acetic acid with smaller quantities of propionate and butyrate produced. Nitrate, known to be high in concentration in inedible potato and wheat biomass grown hydroponically, was converted to ammonia in the anaerobic reactor. Both volatile fatty acid and ammonia production may have implications in a crop production system.  相似文献   

6.
In Advanced Life Support (ALS) systems with bioregenerative components, plant photosynthesis would be used to produce O2 and food, while removing CO2. Much of the plant biomass would be inedible and hence must be considered in waste management. This waste could be oxidized (e.g., incinerated or aerobically digested) to resupply CO2 to the plants, but this would not be needed unless the system were highly closed with regard to food. For example, in a partially closed system where some of the food is grown and some is imported, CO2 from oxidized waste when combined with crew and microbial respiration could exceed the CO2 removal capability of the plants. Moreover, it would consume some O2 produced from photosynthesis that could have been used by the crew. For partially closed systems it would be more appropriate to store or find other uses for the inedible biomass and excess carbon, such as generating soils or growing woody plants (e.g., dwarf fruit trees). Regardless of system closure, high harvest crops (i.e., crops with a high edible to total biomass ratio) would increase food production per unit area and O2 yields for systems where waste biomass is oxidized to recycle CO2. Such interlinking effects between the plants and waste treatment strategies point out the importance of oxidizing only that amount of waste needed to optimize system performance.  相似文献   

7.
The study addresses the possibility of long-duration operation of a higher plant conveyor, using a soil-like substrate (SLS) as the root zone. Chufa (Cyperus esculentus L.), radish (Raphanus sativus L.), and lettuce (Lactuca sativa L.) were used as study material. A chufa community consisting of 4 age groups and radish and lettuce communities consisting of 2 age groups were irrigated with a nutrient solution, which contained mineral elements extracted from the SLS. After each harvest, inedible biomass of the harvested plants and inedible biomasses of wheat and saltwort were added to the SLS. The amounts of the inedible biomasses of wheat and saltwort to be added to the SLS were determined based on the nitrogen content of the edible mass of harvested plants. CO2 concentration in the growth chamber was maintained within the range of 1100–1700 ppm. The results of the study show that higher plants can be grown quite successfully using the proposed process of plant waste utilization in the SLS. The addition of chufa inedible biomass to the SLS resulted in species-specific inhibition of growth of both cultivated crops and microorganisms in the “higher plants – SLS” system. There were certain differences between the amounts of some mineral elements removed from the SLS with the harvested edible biomass and those added to it with the inedible biomasses of wheat and saltwort.  相似文献   

8.
A simplified closed system consisting of a plant growth chamber coupled to a decomposition chamber was used to study carbon exchange dynamics. The CO2 produced via the decomposition of wheat straw was used for photosynthetic carbon uptake by wheat plants. The atmosphere of the two chambers was connected through a circuit of known flow rate. Thus, monitoring the CO2 concentrations in both compartments allowed measurement of the carbon exchange between the chambers, and estimation of the rate of respiration processes in the decomposition chamber and photosynthetic rate in the producer chamber. The objective for CELSS research was to simulate a system where a compartment producing food via photosynthesis, would be supplied by CO2 produced from respiration processes. The decomposition of biomass by the decomposer simulated both the metabolism of a crew and the result of a recycling system for inedible biomass. Concerning terrestrial ecosystems, the objective was to study organic matter decomposition in soil and other processes related to permanent grasslands.  相似文献   

9.
Atmospheres of enclosed environments in which 20 m2 stands of wheat, potato, and lettuce were grown were characterized and quantified by gas chromatography-mass spectrometry. A large number (in excess of 90) of volatile organic compounds (VOCs) were identified in the chambers. Twenty eight VOC's were assumed to be of biogenic origin for these were not found in the chamber atmosphere when air samples were analyzed in the absence of plants. Some of the compounds found were unique to a single crop. For example, only 35% of the biogenic compounds detected in the wheat atmosphere were unique to wheat, while 36% were unique to potato and 26% were unique to lettuce. The number of compounds detected in the wheat (20 compounds) atmosphere was greater than that of potato (11) and lettuce (15) and concentration levels of biogenic and non-biogenic VOC's were similar.  相似文献   

10.
This study compared the growth of potato plants on nutrients recycled from inedible potato biomass. Plants were grown for 105 days in recirculating, thin-film hydroponic systems containing four separate nutrient solution treatments: (1) modified half-strength Hoagland's (control), 2) liquid effluent from a bioreactor containing inedible potato biomass, 3) filtered (0.2 micrometer) effluent, and 4) the water soluble fraction of inedible potato biomass (leachate). Approximately 50% of the total nutrient requirement in treatments 2-4 were provided (recycled) from the potato biomass. Leachate had an inhibitory effect on leaf conductance, photosynthetic rate, and growth (50% reduction in plant height and 60% reduction in tuber yield). Plants grown on bioreactor effluent (filtered or unfiltered) were similar to the control plants. These results indicated that rapidly degraded, water soluble organic material contained in the inedible biomass, i.e., material in leachate, brought about phytotoxicity in the hydroponic culture of potato. Recalcitrant, water soluble organic material accumulated in all nutrient recycling treatments (650% increase after 105 days), but no increase in rhizosphere microbial numbers was observed.  相似文献   

11.
The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.  相似文献   

12.
A functional Bioregenerative Life Support System (BLSS) will generate oxygen, remove excess carbon dioxide, purify water, and produce food on a continuous basis for long periods of operation. In order to minimize fluctuations in gas exchange, water purification, and yield that are inherent in batch systems, staggered planting and harvesting of the crop is desirable. A 418-d test of staggered production of potato cv. Norland (26-d harvest cycles) using nutrients recovered from inedible biomass was recently completed at Kennedy Space Center. The results indicate that staggered production can be sustained without detrimental effects on life support functions in a CELSS. System yields of H2O, O2 and food were higher in staggered than batch plantings. Plants growing in staggered production or batch production on "aged" solution initiated tubers earlier, and were shorter than plants grown on "fresh" solution. This morphological response required an increase in planting density to maintain full canopy coverage. Plants grown in staggered production used available light more efficiently than the batch planting due to increased sidelighting.  相似文献   

13.
The study addresses the possible ways of involving gaseous products produced by “wet” incineration of human wastes mixed with H2O2 in an alternating electric field in the cycling of the physical model of a bio-technical life support system (BTLSS). The resulting gas mixture contains CO2 and O2, which are easily involved in the cycling in the closed ecosystem, and NH3, which is unacceptable in the atmosphere of the BTLSS. NH3 fixation has been proposed, which is followed by nitrification and involvement of the resulting products in the mass exchange of the closed system. Experiments have been performed to show that plants can be grown in the atmosphere resulting from the closing of the gas loop that includes a physicochemical installation and a growth chamber with plants representing the phototrophic compartment of the BTLSS. The results of the study suggest the conclusion that the proposed method of organic waste oxidation can be a useful tool in creating a physical model of a closed-loop integrated BTLSS.  相似文献   

14.
Atmospheric chemistry may be one of the important pathways to the synthesis of organic compounds in a planetary periphery. Depending on the nature of the carbon source (CH4, CO or CO2), the main composition of the atmosphere, and the respective roles of the various energy sources, is it possible, and to what extent, to produce organics? What kind of gaseous mixture is the most favourable to prebiotic organic syntheses? How far can the results of laboratory works be extrapolated to the case of planetary atmospheres? These questions are discussed, on the basis of several available laboratory data, and by considering the main atmospheric composition of the planets of the solar system, and the list of organic compounds which have already been dettected in their atmospheres.  相似文献   

15.
The objectives of this research were to determine photosynthesis, evapotranspiration and growth of lettuce at long-term low atmospheric pressure. Lettuce (Lactuca sativa L. cv. Youmaicai) plants were grown at 40 kPa total pressure (8.4 kPa pO2pO2) or 101 kPa total pressure (20.9 kPa pO2pO2) from seed to harvest for 35 days. Germination rate of lettuce seeds decreased by 7.6% at low pressure, although this was not significant. There was no significant difference in crop photosynthetic rate between hypobaria and ambient pressure during the 35-day study. The crop evapotranspiration rate was significantly lower at low pressure than that at ambient pressure from 20 to 30 days after planting (DAP), but it had no significant difference before 20 DAP or after 30 DAP. The growth cycle of lettuce plants at low pressure was delayed. At low pressure, lettuce leaves were curly at the seedling stage and this disappeared gradually as the plants grew. Ambient lettuce plants were yellow and had an epinastic growth at harvest. The shoot height, leaf number, leaf length and shoot/root ratio were lower at low pressure than those at ambient pressure, while leaf area and root growth increased. Total biomass of lettuce plants grown at two pressures had no significant difference. Ethylene production at low pressure decreased significantly by 38.8% compared with ambient pressure. There was no significant difference in microelements, nutritional phytochemicals and nitrate concentrations at the two treatments. This research shows that lettuce can be grown at long-term low pressure (40 kPa) without significant adverse effects on seed germination, gas exchange and plant growth. Furthermore, ethylene release was reduced in hypobaria.  相似文献   

16.
After initial emphasis on large-scale baseline crop tests, the Kennedy Space Center (KSC) Breadboard project has begun to evaluate long-term operation of the biomass production system with increasing material closure. Our goal is to define the minimum biological processing necessary to make waste streams compatible with plant growth in hydroponic systems, thereby recycling nutrients into plant biomass and recovering water via atmospheric condensate. Initial small and intermediate-scale studies focused on the recycling of nutrients contained in inedible plant biomass. Studies conducted between 1989-1992 indicated that the majority of nutrients could be rapidly solubilized in water, but the direct use of this crop "leachate" was deleterious to plant growth due to the presence of soluble organic compounds. Subsequent studies at both the intermediate scale and in the large-scale Biomass Production Chamber (BPC) have indicated that aerobic microbiological processing of crop residue prior to incorporation into recirculating hydroponic solutions eliminated any phytotoxic effect, even when the majority of the plant nutrient demand was provided from recycled biomass during long term studies (i.e. up to 418 days). Current and future studies are focused on optimizing biological processing of both plant and human waste streams.  相似文献   

17.
Wheat was cultivated on soil-like substrate (SLS) produced by the action of worms and microflora from the inedible biomass of wheat. After the growth of the wheat crop, the inedible biomass was restored in SLS and exposed to decomposition ("biological" combustion) and its mineral compounds were assimilated by plants. Grain was returned to the SLS in the amount equivalent to human solid waste produced by consumption of the grain. Human wastes (urine and feces) after physicochemical processing turned into mineralized form (mineralized urine and mineralized feces) and entered the plants' nutrient solution amounts equal to average daily production. Periodically (once every 60-70 days) the nutrient solution was partly (up to 50%) desalinated by electrodialysis. Due to this NaCl concentration in the nutrient solution was sustained at a fixed level of about 0.26%. The salt concentrate obtained could be used in the human nutrition through NaCl extraction and the residuary elements were returned through the mineralized human liquid wastes into matter turnover. The control wheat cultivation was carried out on peat with use of the Knop nutrient solution. Serial cultivation of several wheat vegetations within 280 days was conducted during the experiment. Grain output varied and yield/harvest depended, in large part, upon the amount of inedible biomass returned to SLS and the speed of its decomposition. After achieving a stationary regime, (when the quantity of wheat inedible biomass utilized during vegetation in SLS is equal to the quantity of biomass introduced into SLS before vegetation) grain harvest in comparison with the control was at most 30% less, and in some cases was comparable to the control harvest values. The investigations carried out on the wheat example demonstrated in principle the possibility of long-term functioning of the LSS photosynthesizing link based on optimizations of biological and physicochemical methods of utilization of the human and plants wastes. The possibilities for the use of these technologies for the creation integrated biological-physicochemical LSS with high closure degree of internal matter turnover are discussed in this paper.  相似文献   

18.
The effects of elevated CO2 on plant growth are reviewed and the implications for crop yields in regenerative systems are discussed. There is considerable theoretical and experimental evidence indicating that the beneficial effects of CO2 are saturated at about 0.12% CO2 in air. However, CO2 can easily rise above 1% of the total gas in a closed system, and we have thus studied continuous exposure to CO2 levels as high as 2%. Elevating CO2 from 340 to 1200 micromoles mol-1 can increase the seed yield of wheat and rice by 30 to 40%; unfortunately, further CO2 elevation to 2500 micromoles mol-1 (0.25%) has consistently reduced yield by 25% compared to plants grown at 1200 micromoles mol-1; fortunately, there was only an additional 10% decrease in yield as the CO2 level was further elevated to 2% (20,000 micromoles mol-1). Yield increases in both rice and wheat were primarily the result of increased number of heads per m2, with minor effects on seed number per head and seed size. Yield increases were greatest in the highest photosynthetic photon flux. We used photosynthetic gas exchange to analyze CO2 effects on radiation interception, canopy quantum yield, and canopy carbon use efficiency. We were surprised to find that radiation interception during early growth was not improved by elevated CO2. As expected, CO2 increased quantum yield, but there was also a small increase in carbon use efficiency. Super-optimal CO2 levels did not reduce vegetative growth, but decreased seed set and thus yield. The reduced seed set is not visually apparent until final yield is measured. The physiological mechanism underlying CO2 toxicity is not yet known, but elevated CO2 levels (0.1 to 1% CO2) increase ethylene synthesis in some plants and ethylene is a potent inhibitor of seed set in wheat.  相似文献   

19.
Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.  相似文献   

20.
An important issue in Controlled Ecological Life Support Systems (CELSS) is the recycling of inedible crop residues to recover inorganic plant nutrients such as nitrates, phosphates, potassium and other macro- and micro-nutrients. In a closed system in space, such regeneration is vital to the long term viability of plant growth necessary for the food production and waste handling process. Chemical approaches to recycling such as incineration and wet oxidation are not compatible with low energy and environmentally friendly regeneration of such nutrients. Biological regeneration is more acceptable environmentally, but it is a very slow process and does not typically result in complete recovery of inorganic and organic nutrients. A new approach to biological regeneration is described here involving the combined use of special enzymatic catalysts and ultrasonic energy in a bioreactor system. This new system has the potential for rapid, efficient, environmentally friendly and complete conversion of crop wastes to inorganic plant nutrients and food recovery from cellulose materials. A series of experimental tests were carried out with a soybean crop residue meal substrate. Biochemical conversion rates were significantly expedited with the addition of enzymes and further enhanced through ultrasonic stimulation of these enzymes. The difference in conversion rates was particularly increased after the initial period of soluble organics conversion. The remaining cellulose substrate is much more difficult to biodegrade, and the ultrasonically-enhanced reaction was able to demonstrate a much higher rate of substrate conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号