首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
This article follows the story of Shuttle development, in the context of the history of the US space programme from Apollo to the Space Station. The Shuttle was chosen as one of a series of ‘space spectaculars’ and has proven to be prohibitively expensive and unreliable, practical only for a very limited number of specialized missions. The Space Station, too, cannot be economically supplied, even if the USA could afford to build it. The author concludes that NASA should cancel the Space Station and the replacement orbiter for Challenger, and engage on a major programme of launch vehicle development, independent of the US military. The aim should be a dramatic reduction of launch vehicle costs, making spaceflight practical, and a truly independent NASA which could restore the USA to space preeminence.  相似文献   

2.
Joseph N. Pelton   《Space Policy》2010,26(4):246-248
The Space Transportation System (STS), for better or worse, has dominated the US space program for some 30 years and is now an American icon. The Space Shuttle orbiters have flown over 120 missions and certainly accomplished some amazing feats, including the deployment of the International Space Station (ISS), the launch and double repair of the Hubble Telescope, a number of classified missions for the US defense establishment and the cementing of international cooperation in space. As the remaining Space Shuttle orbiters head toward various museums, it is timely to look at the STS program in terms of key US space policy decisions that have paralleled the Space Shuttle’s often troubled history. This article seeks, from both a historical and a policy perspective, to assess what might have been. While noting the major accomplishments of the STS, it also identifies what can best be characterized as major lost opportunities and flawed policy decisions that have had multi-billion dollar consequences. In this regard, the US Congress, the White House, and NASA leadership have all played a role. If there have been failings, they have not been by NASA alone, but the entire US space policy leadership.  相似文献   

3.
What is it about the Moon that captures the fancy of humankind? A silvery disk hanging in the night sky, it conjures up images of romance and magic. It has been counted upon to foreshadow important events, both of good and ill, and its phases for eons served humanity as its most accurate measure of time. This paper discusses the Moon as a target for human exploration and eventual settlement. This paper will explore the more than 50-year efforts to reach the Moon, succeeding with space probes and humans in Project Apollo in the 1960s and early 1970s. It will then discuss the rationales for spaceflight, suggesting that human space exploration is one of the least compelling of all that might be offered. The paper will then discuss efforts to make the Moon a second home, including post-Apollo planning, the Space Exploration Initiative, and problems and opportunities in the 2004 Vision for Space Exploration, and cancellation of that program in 2010.  相似文献   

4.
The current debate over the future of human spaceflight in the USA has been a fascinating, and troubling, exercise in futility for those inextricably committed to an expansive vision of human exploration and development of space. The retirement of the Space Shuttle, originally set for the end of 2010 but later extended into 2011, the technical and funding problems of the Constellation follow-on program that led to its cancellation in 2009, and the emergence of commercial vendors who might be able to offer human access to Earth orbit have all complicated the current environment. In view of this situation, the question may be legitimately asked: what might we learn from earlier efforts to develop a human spaceflight capability the last time such a transition took place? Using the post-Apollo transition from the ballistic capsule to a winged, reusable vehicle as a case study, this article seeks to illuminate the planning, decision-making, economic, and political issues that have arisen in this policy debate. It suggests that a web of interlocking issues—only one of which was technical—affected the course taken. Instead, politics, economics, social and cultural priorities, values, and institutional considerations all helped to frame the debate and shape the decision.  相似文献   

5.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   

6.
Eligar Sadeh   《Space Policy》2006,22(4):235-248
The public management dynamics of human spaceflight at NASA in the post-Apollo era—Space Shuttle, International Space Station, and the United States national vision for space exploration—are examined. A number of variables are applied to assess this. Public management processes are identified as a function of political accountability, organizational decision-making and cultures, and technical aspects directed at high reliability and safety of the large-scale, complex, and high-risk technologies that characterize NASA's human spaceflight programs. The findings indicate that these variables are causally linked to management outcomes through dynamics of centralized and decentralized organizational approaches. The success or failure of NASA's human spaceflight programs are linked to organizational management based on dynamics between centralized aspects of management, like controls over cost and schedule, and decentralized aspects, such as engineering authority over technical development.  相似文献   

7.
《Space Policy》2014,30(3):163-169
The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.  相似文献   

8.
Given the diversity of missions it has accomplished and the myriad of adaptations it has undergone, the US Space Shuttle is widely regarded as a highly flexible space vehicle. With the Shuttle’s upcoming 2011 retirement, it is instructive to survey the history of this vehicle’s flexibility for the insights it can provide to the design and characterization of flexibility in future space systems. Data are presented on the evolution of mission requirements over time for 120 missions performed by the Space Shuttle over a period of some 27 years. Distinct trends in the time domain – as well as their causes – are identified and discussed, and early manifest plans from 1982 serve as a confirmation that these trends were not originally anticipated. Eight examples are then presented of engineering modifications that allowed the Shuttle to adapt and accommodate these requirement changes. Several additional instances of Shuttle flexibility are explored, such as post-Columbia disaster modification, upgrade programs and derived vehicles, and one case in which flexibility was inhibited by an early design decision.  相似文献   

9.
Joseph Lorenzo Hall   《Space Policy》2003,19(4):239-247
The National Aeronautics and Space Administration (NASA)—as the global leader in all areas of spaceflight and space science—is a unique organization in terms of size, mission, constraints, complexity and motivations. NASA's flagship endeavor—human spaceflight—is extremely risky and one of the most complicated tasks undertaken by man. It is well accepted that the tragic destruction of the Space Shuttle Challenger on 28 January 1986 was the result of organizational failure. The surprising disintegration of the Space Shuttle Columbia in February 2003—nearly 17 years to the day after Challenger—was a shocking reminder of how seemingly innocuous details play important roles in risky systems and organizations. NASA as an organization has changed considerably over the 42 years of its existence. If it is serious about minimizing failure and promoting its mission, perhaps the most intense period of organizational change lies in its immediate future. This paper outlines some of the critical features of NASA's organization and organizational change, namely path dependence and “normalization of deviance”. Subsequently, it reviews the rationale behind calling the Challenger tragedy an organizational failure. Finally, it argues that the recent Columbia accident displays characteristics of organizational failure and proposes recommendations for the future.  相似文献   

10.
2010 saw both the unveiling of a new US National Space Policy and the announcement of a fundamentally different strategy for US human spaceflight that would move from the NASA-government-led Apollo-style approach to a greater reliance on the private sector and international cooperation. This viewpoint puts forward arguments on why change in the US approach to human spaceflight is needed, while acknowledging that achieving it in the face of vested interests and threats to jobs and livelihoods is extremely difficult. It suggests that greater US recognition of the need to ensure the sustainability of space activity (by addressing debris, radio-frequency interference and potential deliberate disruption of spacecraft), and an apparent willingness to countenance international norms to govern space activities, could be the new policy’s most lasting heritage.  相似文献   

11.
This paper examines the debate within the USA over how to meet the perceived competition from the successful European Ariane launcher and the loss of US market share for space launch services that it represented. In particular, it explores the origins of the 1983 Reagan Administration policy to turn over expendable launch vehicle production and operation to private industry. The Administration's other decisions to: (1) use the Space Shuttle to fly all government payloads, and (2) allow NASA to market Space Shuttle services commercially, conflicted with this commercialization policy. These policies effectively caused US industry to delay entry into the international competition for launch services until after the loss of the Space Shuttle Challenger in January 1986.  相似文献   

12.
In 2009 President Obama proposed a budget for the National Aeronautics and Space Administration (NASA) that canceled the Constellation program and included the development of commercial crew transportation systems into low Earth orbit. This significant move to shift human spaceflight into the private sector sparked political debate, but much of the discourse has focused on impacts to “safety.” Although no one disputes the importance of keeping astronauts safe, strategies for defining safety reveal contrasting visions for the space program and opposing values regarding the privatization of U.S. space exploration. In other words, the debate over commercial control has largely become encoded in arguments over safety. Specifically, proponents of using commercial options for transporting astronauts to the International Space Station (ISS) argue that commercial vehicles would be safe for astronauts, while proponents of NASA control argue that commercial vehicles would be unsafe, or at least not as safe as NASA vehicles. The cost of the spaceflight program, the technical requirements for designing a vehicle, the track record of the launch vehicle, and the experience of the launch provider are all incorporated into what defines safety in human spaceflight. This paper analyzes these contested criteria through conceptual lenses provided by fields of science and technology policy (STP) and science, technology, and society (STS). We ultimately contend that these differences in definition result not merely from ambiguous understandings of safety, but from intentional and strategic choices guided by normative positions on the commercialization of human spaceflight. The debate over safety is better considered a proxy debate for the partisan preferences embedded within the dispute over public or private spaceflight.  相似文献   

13.
The question is: should the United States and nations at large pursue a human spaceflight program (and if so, why)? I offer an unwavering positive answer to this question, and state the reasons for it while considering the broad challenges and benefits of (human) spaceflight. Space exploration is a human activity that is intrinsically forward-looking, and as such, has positive potential. Both national and international space programs can galvanize the population, inspire the youth, foster job-creation, and motivate the existing workforce. The nature of the enterprises involved—their scale, novelty, and complexity—requires a steady and continuous upward progression toward greater societal, scientific and technological development. That is, in order to overcome the challenges of human spaceflight, progress is required. More to the point, the survival of humanity depends on expanding beyond the confines of our planet. Human spaceflight, in short, presents us with an opportunity to significantly advance the nation and the global community.  相似文献   

14.
A series of workshops designed to make up for the lack of high-level, informal discussion of European space policy has been running—with a gap during formulation of the EC Green/White Paper on this subject—since September 2002. In view of the progress made in establishing a coherent European strategy, and of various other recent events, such as China's entry into the human spaceflight field, the organizers intend not only to continue the series but also to establish a more permanent, research-oriented European Space Policy Foundation (ESPF). Following a report on the proceedings of the third workshop, held in September 2003, which covered developing an overall European policy, new applications (Galileo and GMES) and human spaceflight, the authors set out a proposal for an ESPF and present the six major research themes it would aim to investigate.  相似文献   

15.
US government proposals to cut the scientific budget of the ISS are placed within the historical context of the US space program. The author divides this into three phases—early days to the end of Apollo, the Shuttle era, and the Space Station era—and shows that all of these have suffered from decisions to reduce scientific capabilities. Even without cuts, it is unlikely that the Station can produce scientific outcomes that are commensurate with the investment that has taken place and it is imperative that policy makers learn from the lost opportunities of the two earlier phases if greater disappointment is to be avoided.  相似文献   

16.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

17.
This paper shares an interesting and unique case study of knowledge capture by the National Aeronautics and Space Administration (NASA), an ongoing project to recapture and make available the lessons learned from the Apollo lunar landing project so that those working on future projects do not have to “reinvent the wheel”. NASA’s new Constellation program, the successor to the Space Shuttle program, proposes a return to the Moon using a new generation of vehicles. The Orion Crew Vehicle and the Altair Lunar Lander will use hardware, practices, and techniques descended and derived from Apollo, Shuttle, and the International Space Station. However, the new generation of engineers and managers who will be working with Orion and Altair are largely from the decades following Apollo, and are likely not well aware of what was developed in the 1960s. In 2006, a project at NASA’s Johnson Space Center was started to find pertinent Apollo-era documentation and gather it, format it, and present it using modern tools for today’s engineers and managers. This “Apollo Mission Familiarization for Constellation Personnel” project is accessible via the web from any NASA center for those interested in learning answers to the question “how did we do this during Apollo?”  相似文献   

18.
During the next two decades, we will establish the foundation for the 21st century's accomplishments in space. The Space Shuttle vehicle will become the cornerstone for that foundation by providing economical opportunities for space exploration and utilization.Reusability of the Shuttle vehicle is the key to its economy. The major developmental challenges encountered in the Shuttle program are typified by the complexities involved in designing the reusable propulsion and thermal protection subsystems. We successfully met such challenges and are nearing the launch of the first Shuttle orbital flight.Our immediate goal is to enter the Space Shuttle operational phase because only then will we fully understand the unique capabilities of the Shuttle. Concurrent with our effort to begin Shuttle operations are our initial efforts to expand Shuttle capabilities, extending them significantly beyond those of the current baseline system.Shuttle payload capacity and mission-duration capabilities are to increase considerably during the next decade. Just as present Shuttle performance specifications and development timetables were guided by the space program plans and forecasts of the 1960s, so will the development of long-range space programs be determined by our near-future achievements. We anticipate that the Space Shuttle will play a critical role in those achievements.  相似文献   

19.
Uri JJ  Haven CP 《Acta Astronautica》2005,56(9-12):883-889
The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew–ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.  相似文献   

20.
This article presents a plan for reconfiguring the US-international Space Station, which could be used to undertake exploration of Mars. The author believes that there is an urgent need to give a unified purpose to the US Shuttle, Space Station and space science activities, and that planning for an international Mars sample return mission along the lines outlined here could start the US space programme moving again within budgetary requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号