首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
受鸟类抬起羽毛控制分离流的启发,涡襟翼成为翼型大迎角分离流的控制措施之一。采用数值模拟方法研究不同雷诺数下涡襟翼在控制翼型大迎角分离流动时的气动特性及其物理机制。结果表明:涡襟翼在低雷诺数下能够极大地改善翼型的大迎角升力特性,其物理机理是涡襟翼将翼型主分离涡的涡心位置控制在离翼型更近的区域,且涡心位置的涡量得到大幅提升,使得涡心附近的低压特性影响到翼型上表面,而且涡襟翼能够将翼型上方前区的低压与下游的高压隔开;但是在高雷诺数(对应常规飞机雷诺数)下涡襟翼改善翼型大迎角气动特性的效果远不如低雷诺数情况,由此解释了为什么鸟类能够通过羽毛抬起提高升力特性,而常规飞机的涡襟翼只能作为阻力板使用的原因。  相似文献   

2.
带扰流板翼型的流场数值模拟   总被引:2,自引:0,他引:2  
基于2D可压N-S方程,对带扰流板的翼型绕流流场进行非定常数值模拟.分别对迎角及扰流板偏角对气动性能的影响做了分析,结果表明,扰流板偏角固定,随迎角增大,升力曲线线性良好,阻力在正迎角范围内的斜率小于负迎角;迎角相同,扰流板偏角越大,升力越小,阻力则越大.扰流板后的流场是一复杂的周期性旋涡脱落过程,主要由板梢涡和后缘涡主导,两者相互作用,形成周期性旋涡脱落.  相似文献   

3.
Mini-TED改变翼型跨声速性能的数值分析   总被引:2,自引:1,他引:1  
周华 《航空学报》2009,30(8):1367-1373
用数值方法对比分析了NACA0012翼型在微小后缘装置(Mini-TED)打开前后跨声速气动性能的变化,并对其增升机理进行了初步分析。数值结果表明,Mini-TED可以将翼型上表面激波位置大幅度后移,大大提高翼型的升力。在小迎角条件下,Mini-TED后面存在一个由3个旋涡构成的稳定流动结构,正是这个旋涡结构改变了后缘库塔条件,导致上翼面激波位置的变化,进而大幅度提高了升力。当迎角增加后,后缘旋涡结构中的一个旋涡逐渐上移并与激波诱导的分离区合并,从而加速了翼型上表面分离。由于Mini-TED使得迎风面积增加,因而导致升力和阻力同时大幅上升,但总体上看仍然能够大幅度提高升阻比,证明Mini-TED后缘设计是一种极有潜力的新型高升力装置。  相似文献   

4.
改变昆虫翅膀的褶皱结构可以优化翼型的气动性能,有利于微型飞行器的气动设计。以蜻蜓翼作为参考,采用计算流体力学(CFD)的方法计算了攻角范围为0°~20°,雷诺数范围为700~2300时褶皱位于前缘、尾缘和中部位置时三种翼型的滑翔气动性能。结果表明:在不同攻角和雷诺数下,褶皱位于尾缘的翼型具有最大的升力系数和升阻比,滑翔气动性能最优;当雷诺数为1500,攻角为10°时,褶皱位于尾缘的翼型时均升力系数分别比位于前缘和中部的翼型提高了58%和82%,升阻比分别提高了49%和33%;这是由于尾缘褶皱中的涡起到了延缓前缘涡脱落的作用,使前缘涡更为集中,更贴近壁面。   相似文献   

5.
桨涡干扰噪声是直升机气动噪声主要组成之一,为了正确预测和降低直升机噪声,必须开展气动噪声相关物理参数研究。在对声场进行计算流体力学(CFD)直接数值模拟的基础上,分析了不同厚度和来流马赫数下二维平行桨涡干扰噪声传播特性和声源位置,分析了翼型厚度和来流马赫数对桨涡干扰噪声的影响,并得到了可压缩情况下远场声压预测公式。研究表明,低马赫数下,翼型厚度对噪声指向性影响不大,高马赫数下,翼型厚度对噪声指向性影响程度增大;噪声强弱主要随来流马赫数变化,翼型厚度对其影响较小;翼型厚度和来流马赫数变化不会改变声源点位置。开展不同翼型厚度和来流马赫数下的桨涡干扰噪声分析可以为进一步了解并控制直升机桨涡干扰噪声提供一定的参考。  相似文献   

6.
直升机共轴双旋翼相遇过程的非定常气动干扰在其周期性干扰中最为强烈。为了研究该过程中的干扰特征,建立了一个基于非定常雷诺平均Navier-Stokes方程的气动干扰数值方法,双旋翼的反转运动采用运动嵌套网格进行模拟。为了探究双旋翼相遇时的气动干扰机理,以两个相对运动的双翼型系统来模拟双旋翼特定展向截面的非定常相遇过程。分析了双旋翼和双翼型相遇时的气动特性和流场特征,并对双翼型系统进行了参数影响研究,结果表明:双旋翼上下桨叶相遇时,上下旋翼拉力均会出现先增后减的变化趋势且波动幅值分别为其对应总拉力的30%和22%,双翼型系统的升力波动趋势与之相似;间距增大使上下翼型间的气动干扰减小,且上下翼型升力波动对间距变化的敏感时间不同;翼型相对厚度增大使双翼型升力波动幅值增大,并出现二次波动;有附加来流时,相对来流速度较小的翼型升力波动的幅值与范围更大。   相似文献   

7.
针对NACA0012翼型舵面偏转问题,数值模拟了不同参数对翼型气动特性的影响。基于非结构动网格技术,采用ALE有限体积描述下的二维可压缩非定常N-S方程,计算通量采用Vanleer格式、时空二阶格式,利用Venkatakrishnan限制器抑制数值振荡。非定常计算结果表明,NACA0012翼型绕1/4弦点作周期性俯仰振动的升力系数和俯仰力矩系数结果与实验数据吻合良好,验证了数值方法的准确性;在翼型舵面表面有分离区产生,升力系数和俯仰力矩系数形成滞回环,在亚声速情况下,滞回环幅值较小,进入超声速阶段以后,幅值增大,随着翼型间缝隙宽度逐渐增加,翼型升力系数和俯仰力矩系数与无缝翼型相比逐渐降低。  相似文献   

8.
旋翼桨-涡干扰气动特性计算及参数影响研究   总被引:2,自引:1,他引:1  
史勇杰  招启军  徐国华 《航空学报》2010,31(6):1106-1114
建立了一个适用于旋翼桨-涡干扰(BVI)气动特性分析的数值方法。在该方法中,控制方程采用惯性坐标系下的非定常Euler方程,以适合于分析BVI流场的特点;为便于前飞流场分区求解和信息传递,使用了嵌套网格方法;对于流场中涡线的模拟,建立了一种适用于有限体积格式的涡引入方法——广义网格速度法,以简化计算。应用上述方法对旋翼BVI流场进行了计算,并与可得到的试验数据进行对比,验证了方法的有效性。通过对比桨叶弦向位置压强的变化得出,在旋翼BVI过程中,气动载荷主要来自桨叶10%弦长内的前缘部分的压强突变。文中还进一步分析了涡强、干扰距离和干扰角度对BVI气动特性的影响。本文的BVI数值计算表明:当涡接近桨叶前缘时,升力达到最大;而涡位于后缘位置时,诱导速度改变桨叶环量分布,破坏了后缘的库塔条件,但随着涡的远离,桨叶表面环量开始重构。  相似文献   

9.
从涡量流函数形式的N-S方程出发,数值计算了大迎角水平振动翼型的粘性绕流问题,得到近场涡结构及非定常演化过程。探讨了振动频率、振幅及迎角对流场涡结构及翼型升、阻特性的影响。结果表明,振动频率及振幅增加有助于提高翼型的平均升力;过大的迎角不利于升力提高。  相似文献   

10.
基于高性能数值风洞,在低雷诺数下对前掠翼布局中鸭翼涡和主翼涡之间的干扰机理进行了研究,着重研究了前掠翼鸭式布局中鸭翼位置对纵向气动特性影响的机理,发现鸭翼和主翼之间的气动力干扰与相互的耦合作用在全机的升力特性和稳定性方面做出了很大的贡献。随着鸭翼的引入,可以从根本上改善主翼表面的流态,由它产生的自身脱体涡涡系对主翼涡系能够产生有利干扰,可以有效的控制边界层的气流分离。中小迎角时,其气动特性的提高主要取决于鸭翼和主翼的相互位置;而大迎角飞行时,则还与主翼和鸭翼自身产生涡系的强度、位置、破裂早晚以及相互的控制力有关等。并展开速度矢量图、空间流线图以及压力云图对其不同的气动布局和涡系进行了分析.  相似文献   

11.
应用Gao-Yong湍流模型模拟了吹气对翼型表面分离流控制的影响.结果表明,该模型不仅能够对翼型绕流的分离点、表面压力分布、升阻特性等做出较好预测,而且还能模拟出控制分离的吹气效果:①有效消除翼面分离涡;②"裹携"翼面来流进一步提高升力系数.提高吹气动量系数,升力曲线上移的幅度也相应增加;而吹气角度对吹气射流"裹携"作用的强弱也有一定的影响,当吹气方向相对于翼弦偏上时,吹气射流"裹携"来流与消除分离涡的作用增强,升力提升更为明显.   相似文献   

12.
《中国航空学报》2016,(6):1506-1516
Numerical simulation of wing stall of a blended flying wing configuration at transonic speed was conducted using both delayed detached eddy simulation(DDES) and unsteady Reynolds-averaged Navier-Stokes(URANS) equations methods based on the shear stress transport(SST) turbulence model for a free-stream Mach number 0.9 and a Reynolds number 9.6 × 10~6. A joint time step/grid density study is performed based on power spectrum density(PSD) analysis of the frequency content of forces or moments, and medium mesh and the normalized time scale0.010 were suggested for this simulation. The simulation results show that the DDES methods perform more precisely than the URANS method and the aerodynamic coefficient results from DDES method compare very well with the experiment data. The angle of attack of nonlinear vortex lift and abrupt wing stall of DDES results compare well with the experimental data. The flow structure of the DDES computation shows that the wing stall is caused mainly by the leeward vortex breakdown which occurred at x/x_(cr)= 0.6 at angle of attack of 14°. The DDES methods show advantage in the simulation problem with separation flow. The computed result shows that a shock/vortex interaction is responsible for the wing stall caused by the vortex breakdown. The balance of the vortex strength and axial flow, and the shock strength, is examined to provide an explanation of the sensitivity of the breakdown location. Wing body thickness has a great influence on shock and shock/vortex interactions, which can make a significant difference to the vortex breakdown behavior and stall characteristic of the blended flying wing configuration.  相似文献   

13.
旋成体大迎角分离流的Euler方程数值模拟   总被引:1,自引:1,他引:0  
用三维Euler方程计算旋成体的大迎角绕流,我们发现:亚声速自由流时,计算得到的是无分离流动,与实际的分离流不相符合,因而计算的法向力大大小于有分离的实验值;而当自由流为超声速,且横向自由流M数较高时,由于背风表面出现激波,无粘Euler方程的数值计算能自动捕捉到背风面上的分离涡,计算法向力与实验值接近。为了对亚声速自由流用Euler方程数值模拟大迎角旋成体背风面上分离涡,根据问题的物理图像,在假设的分离线上,提出强加Kutta条件的方法,成功地计算出有分离流动,使计算的法向力与实验值接近。  相似文献   

14.
给出了一种预测三维激盘/附面层相互作用诱导的流动起始分离的方法。研究结果表明:激波与附面层相互作用所诱导的二次流动是影响起始分离的重要因素。当来流相对马赫数大于1.5时,强的激波/附面层相互作用可能导致跨音风扇转子叶尖区域的流动分离。  相似文献   

15.
张扬军  陈乃祥  陶德平  周盛 《航空动力学报》1996,11(3):306-308,334,336
将分离与损失相关联,提出了利用转子进出口参数来确定跨音风扇转子内部分离流动的方法。应用该方法对几个转子流场计算的结果表明,在转子的叶尖区域,由于强的激波与附面层相互作用,使得流动在激波后不久便发生分离。叶尖漏流涡可能对激波与附面层的相互作用诱导流动分离有较大影响。  相似文献   

16.
基于DES方法的三角翼激波-涡干扰流场数值模拟   总被引:1,自引:1,他引:0  
采用基于Spalart-Allmaras湍流模型的脱体涡模拟(DES)方法,数值求解Navier-Stokes方程,模拟绕尖前缘三角翼的跨音速流动,并对三角翼上翼面的复杂激波-旋涡干扰流场进行了分析。与NASA兰利研究中心的NTF风洞实验结果对比分析表明,DES方法能很好地模拟跨音速三角翼上的旋涡流动。随着攻角由中度攻角增加到大攻角,支架附近的激波越来越强,对主分离涡的干扰作用越来越大,直至出现激波干扰导致的涡破裂。激波的形状、位置及涡破裂位置均与实验结果吻合良好。  相似文献   

17.
This study focuses on the trailing-edge separation of a symmetrical airfoil at a low Rey-nolds number. Finite volume method is adopted to solve the unsteady Reynolds-averaged Navier-Stokes (RANS) equation. Flow of the symmetrical airfoil SD8020 at a low Reynolds number has been simulated. Laminar separation bubble in the flow field of the airfoil is observed and process of unsteady bubble burst and vortex shedding from airfoil surfaces is investigated. The time-dependent lift coefficient is characteristic of periodic fluctuations and the lift curve varies nonlinearly with the attack of angle. Laminar separation occurs on both surfaces of airfoil at small angles of attack. With the increase of angle of attack, laminar separation occurs and then reattaches near the trailing edge on the upper surface of airfoil, which forms laminar separation bubble. When the attack of angle reaches certain value, the laminar separation bubble is unstable and produces two kinds of large scale vortex, i.e. primary vortex and secondary vortex. The periodic processes that include secondary vortex production, motion of secondary vortex and vortex shedding cause fluctuation of the lift coefficient. The periodic time varies with attack of angle. The secondary vortex is relatively stronger than the primary vortex, which means its influence is relatively stronger than the primary vortex.  相似文献   

18.
定后掠角密切锥乘波体的生成和设计方法   总被引:2,自引:1,他引:1  
段焰辉  范召林  吴文华 《航空学报》2016,37(10):3023-3034
对定后掠角密切锥乘波体(OCWRCAS)的生成方法和考虑黏性的设计方法进行了研究。定后掠角乘波体的前缘具有特定的后掠角,能够在上表面产生稳定分离涡从而改善乘波体的气动性能。本文首先在传统密切锥乘波体生成方法的基础上给出了定后掠角密切锥乘波体的生成方法;从前缘后掠的几何特征中提取了后掠角、激波角和前缘曲线程度等设计变量,并研究了设计变量的取值范围;以遍历设计空间的思路对两类定后掠角密切锥乘波体进行了设计分析,研究了升阻比、体积效率随设计变量的变化规律,然后在设计空间内进行了多目标寻优;最后使用计算流体力学方法对定后掠角乘波体的乘波特性和涡升力特性进行了验证。结果表明,由本文生成方法得到的定后掠角密切锥乘波体具有明显的乘波特性并且能够在较高的升阻比时保证一定的体积效率;定后掠角前缘能够在一定的迎角下在上表面产生稳定的分离涡,产生涡升力。  相似文献   

19.
乘波飞行器在高超声速具有良好的气动性能,但偏离设计状态,气动性能则难以保持。为在宽速域范围能一直维持较好的气动性能,研究人员利用定平面形状乘波设计的优势,提出“涡升力”乘波设计。本文将涡升力乘波体的设计方法归纳为基于吻切理论的定前缘型线法、基于激波装配法的波导体法和基于给定激波面的投影法三大类,综述了涡升力乘波体在宽速域气动特性的相关研究进展,并对涡升力乘波体的后续研究提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号