首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digitally coded radar waveforms can be used to obtain large time-bandwidth products (pulse compression ratios). It is demonstrated that periodic radar waveforms with zero sidelobes or almost zero sidelobes can be defined. A perfect periodic code is a periodic code whose autocorrelation function has zero sidelobes and whose amplitude is uniform (maximum power efficiency=1). An asymptotically perfect periodic code has the property that as the number of elements in the code goes to infinity the autocorrelation function of the code has zero sidelobes and its power efficiency is one. The authors introduce a class of radar waveforms that are either perfect or asymptotically perfect codes. These are called reciprocal codes because they can be derived through a linear transformation of known codes. The aperiodic performance of the reciprocal code is examined  相似文献   

2.
Novel waveforms are described that have low sidelobes when individual or multiple waveforms are approximately processed. They are related to orthogonal matrices that may be associated with complementary sequences and also with periodic waveforms having autocorrelation functions with constant zero-amplitude sidelobes. Also described are sets of sequences whose cross-correlation functions sum to zero everywhere. A potential application is the elimination of ambiguous range stationary clutter  相似文献   

3.
Noncoherent Radar Pulse Compression Based on Complementary Sequences   总被引:1,自引:0,他引:1  
Noncoherent pulse compression (NCPC), suggested recently, uses on-off keying (OOK) signals, obtained from Manchester coding a binary sequence with favorable a-periodic autocorrelation. This paper investigates the use of binary complementary pairs as a basis for NCPC. It shows that a pair of Manchester coded, N-element binary complementary sequences will yield a peak sidelobe (PSL) ratio of 1/(2N).  相似文献   

4.
The recently developed Radon-ambiguity transform (RAT) detects unknown linear frequency modulated (LFM) signals by computing line integrals through the origin of the signal's ambiguity function (AF) magnitude. It is shown that this method also detects the step LFM and frequency-derived polyphase pulse compression waveforms with varying performance degradation. Simulations are provided to estimate the detection loss relative to the LFM.  相似文献   

5.
基于GPU的脉冲压缩并行化研究   总被引:1,自引:0,他引:1  
在雷达数字脉冲压缩实时信号处理中,常需要每秒完成几亿甚至几百亿次的运算,采用能够专注于执行高度线程化并行任务的GPU实现脉冲压缩具有重要意义.根据线性调频信号和匹配滤波器理论基础,提出了基于GPU的脉冲压缩并行化实现方法.测试结果表明,基于GPU的脉冲压缩并行化方法相对于CPU有百倍以上的加速比.  相似文献   

6.
This paper presents the output waveform of a correlation techniquewhich incorporates time domain amplitude weighting and matchedfiltering. This scheme may be used in pulse compression radars wherefine target detail is desired over an increment of range, the rangewindow. Analytic expressions describing the amplitude, phase, andfrequency modulation of the output waveform are obtained for thecosine-squared weighted spectrum, truncated Taylor weighted spectrum,and cosine-cubed weighted spectrum with weighting mismatchas a parameter. The effects of such mismatches on the amplitude,phase, and frequency modulation of the compressed waveform areplotted. However, the methods used to obtain these results are generalenough to obtain output waveforms of other weighting functions similarlymismatched.  相似文献   

7.
宽带信号广泛应用于雷达、导航和卫星通讯等领域。宽带信号的传统接收处理方法主要是采用匹配滤波或子带分割技术。本文用去斜脉冲压缩处理方法处理宽带信号,给出了具体的实现结构和改进措施,分析了如何选择系统的信号采样频率,同时还给出了脉压波形的仿真结果及性能分析。实验表明:对中心频率为9.5GHz、带宽1.3GHz、脉冲宽度30μs的宽带线性调频信号,采用该方法处理只需90MHz采样数据率,大大降低了数据采集的难度。  相似文献   

8.
In this paper, the problem of parameter estimation of the combined radar signal adopting chaotic pulse position modulation (CPPM) and linear frequency modulation (LFM), which can be widely used in electronic countermeasures, is addressed. An approach is proposed to estimate the initial frequency and chirp rate of the combined signal by exploiting the second-order cyclostationarity of the intra-pulse signal. In addition, under the condition of the equal pulse width, the pulse repetition interval (PRI) of the combined signal is predicted using the low-order Volterra adaptive filter. Simulations demonstrate that the proposed cyclic autocorrelation Hough transform (CHT) algorithm is theoretically tolerant to additive white Gaussian noise. When the value of signal noise to ratio (SNR) is less than 4 dB, it can still estimate the intra-pulse parameters well. When SNR = 3 dB, a good prediction of the PRI sequence can be achieved by the Volterra adaptive filter algorithm, even only 100 training samples.  相似文献   

9.
10.
根据雷达发射恒定载频信号时匀加速目标的回波为线性调频(LFM)信号的特点,研究了在单脉冲内基于Hough—Ambiguity变换(HAT)估计目标径向加速度的问题。首先,采用Hough—Ambiguity变换得到信号的调频斜率;进而,根据调频斜率估计出目标径向加速度;最后,仿真实验结果验证了方法的有效性。  相似文献   

11.
In radar signal design it is well known that a fixed volume under the ambiguity surface representing signal energy can only be shifted but not eliminated in the delay-Doppler plane because of the constraint imposed by Woodward's total volume invariance. Rihaczek has shown that periodic signal repetition, though appealing to increased energy, increases the time-bandwidth product at the expense of introducing pronounced ambiguities in the delay-Doppler plane, and thus self-clutter is generated when signals are repeated in the time domain to increase energy. The undesirable self-clutter has a masking effect on targets in different resolution cells thereby limiting performance. An analysis is presented to show that a class of waveforms described in an earlier paper as the subcomplementary set of sequences which are basically repetitive and Hadamard coded, exhibit the property of cancelling self-clutter completely in the delay-Doppler plane if their ambiguity functions are combined. By this technique it is possible to repeat contiguously a basic waveform N times in a prescribed manner to increase signal energy and to cancel totally the resulting self-clutter by combining the ambiguity functions of N different repetitive waveforms which are Hadamard coded. A convenient matrix method to combine the ambiguity functions of subcomplementary sequences, which is an extension of known methods to derive the ambiguity function of repetitive waveforms, is presented. Radar implementation considerations and comparison of performance with various forms of linear frequency modulation (FM) are also discussed.  相似文献   

12.
Mismatched filtering of odd-periodic binary sequences   总被引:2,自引:0,他引:2  
Binary sequences with perfect periodic autocorrelation functions, as required in communications, radar, and measuring, are not known for any lengths >4. As a possible remedy, mismatched filtering can be used to entirely suppress any sidelobes of the periodic autocorrelation function at the expense of a reduced signal-to-noise ratio (SNR). In this work, the mismatched filtering method is extended to the odd-periodic autocorrelation function whose technical implementation is no more complex than that of periodic sequences. A new class of odd-periodic binary sequences is constructed that exist for many more lengths and exhibit significantly lower mismatched filtering losses than any known periodic sequences  相似文献   

13.
In active sonar systems, proper selection of the transmitted waveform is critical for target detection and parameter estimation, especially with the existence of clutter (reverberation). Two commonly used waveforms (constant frequency (CF) and linear frequency modulated (LFM)) are studied. Their characteristics are complementary both with respect to their accuracies and their sensitivity to the blind zero-Doppler ridge. Several fusion schemes of the two kinds of waveforms are explored and fusion results are studied both analytically and from simulation. It is concluded that fusion of the information of different waveforms can be not only more robust, but in some cases outright preferable, in term of detection probability and estimation accuracy.  相似文献   

14.
A coherent train of identical linear FM (LFM) pulses is used extensively in radar because of its good range and Doppler resolution. Its relatively high autocorrelation function (ACF) sidelobes are sometimes reduced through spectrum shaping (e.g., nonlinear FM, or intrapulse weighting on receive). We show how to completely remove most of the ACF sidelobes about the mainlobe peak, without any increase to the mainlobe width, by diversifying the pulses through overlaying them with orthonormal coding. A helpful byproduct of this design is reduced ACF recurrent lobes. The overlaid signal also results in reduced Doppler tolerance, which can be considered as a drawback for some applications. The method is applied to several trains of identical pulses (LFM and others) using several orthonormal codes. The effect on the three important properties of the radar signal: ACF, ambiguity function (AY), and frequency spectrum is presented. The effect on Doppler tolerance is studied, and implementation issues are discussed. The new design is also compared with complementary and sub-complementary pulse trains and is shown to be superior in many aspects.  相似文献   

15.
It is shown that signal waveforms utilizing discrete frequency modulation (DFM) which are generated using a narrowband or frequency shift algorithm have ambiguity sidelobe distortion which is caused by the approximation of time compression by frequency shift. A logarithmic frequency allocation algorithm is presented which couches the signal design problem in terms of band and step ratios, rather than in terms of bandwidth and frequency steps, and is consistent with the wideband formulation of the ambiguity function. The algorithm makes use of the same basic code generating sequence used for narrowband frequency allocation, but the resulting signal will have invariant ambiguity sidelobe positions for any receiver realization in the delay-time compression plane.  相似文献   

16.
针对低成本三相四开关变频器构成的永磁同步电机驱动系统存在转矩脉动较大的问题,提出了一种系统转矩脉动优化控制策略。系统中存在的转矩脉动分为低频和高频转矩脉动,对于由直流电容电压波动产生的低频脉动,采用了引入一种基于非正交坐标变换的补偿方案,而对于高频脉动,分析评估了不同调制策略的影响,选择了最优调制策略。此外,线性调制范围设置考虑了系统直流电容电压波动,避免了低频脉动造成的过调制。同时,还设计了电容电压偏移抑制控制以扩大线性调制区范围。试验结果验证了新型控制策略抑制系统转矩脉动的效果明显。  相似文献   

17.
CW radar signals and processors are discussed. The use of the periodic ambiguity function (PAF) to analyze the delay-Doppler performance of CW signals and their corresponding correlation receivers, is extended to include weight function effects. This work provides tools which can predict the delay-Doppler response of almost any phase-coded CW radar. Examples demonstrate that a combination of CW signals having perfect periodic autocorrelation, a matched reference signal with a large number of modulation periods and a smooth weight function, can create a delay-Doppler response with extremely low sidelobes, strongly resembling the response of a coherent pulse train  相似文献   

18.
A technique is introduced to select poly-phase codes and optimal filters of a pulse compression system that have specific temporal and frequency characteristics. In the particular problem under study, multiple vehicles are assigned unique codes and receiver filters that have nearly orthogonal signatures. Narrowband users, that act as interference, are also present within the system. A code selection algorithm is used to select codes which have low autocorrelation sidelobes and low cross correlation peaks. Optimal mismatched filters are designed for these codes which minimize the peak values in the autocorrelation and the cross correlation functions. An adjustment to the filter design technique produces filters with nulls in their frequency response, in addition to having low correlation peaks. The method produces good codes and filters for a four-user system with length 34 four-phase codes. There is considerable improvement in cross and autocorrelation sidelobe levels over the matched filter case with only a slight decrease in the signal-to-noise ratio (SNR) of the system. The mismatched filter design also allows the design of frequency nulls at any frequency with arbitrary null attenuation, null width, and sidelobe level, at the cost of a slight decrease in processing gain  相似文献   

19.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

20.
Properties and methods for synthesizing sequences with perfect periodic autocorrelation functions and good energy efficiency are discussed. The construction is extended to two-dimensional perfect arrays. The construction methods used are based mainly on a search in the frequency domain and on a multiplication theorem for periodic sequences and arrays  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号