首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multistatic adaptive pulse compression   总被引:2,自引:0,他引:2  
A new technique denoted as multistatic adaptive pulse compression (MAPC) is introduced which exploits recent work on adaptive pulse compression (APC) in order to jointly separate and pulse compress the concurrently received return signals from K proximate multistatic radars operating (i.e., transmitting) within the same spectrum. For the return signal from a single pulse of a monostatic radar, APC estimates the particular receive filter for a given range cell in a Bayesian sense reiteratively by employing the matched filter estimates of the surrounding range cell values as a priori knowledge in order to place temporal (i.e., range) nulls at the relative ranges occupied by large targets and thereby suppress range sidelobes to the level of the noise. The MAPC approach generalizes the APC concept by jointly estimating the particular receive filter for each range cell associated with each of several concurrently-received radar return signals occupying the same spectrum. As such, MAPC is found to enable shared-spectrum multistatic operation and is shown to yield substantial performance improvement in the presence of multiple spectrum-sharing radars as compared with both standard matched filters and standard least-squares mismatched filters  相似文献   

2.
Adaptive pulse compression via MMSE estimation   总被引:2,自引:0,他引:2  
Radar pulse compression involves the extraction of an estimate of the range profile illuminated by a radar in the presence of noise. A problem inherent to pulse compression is the masking of small targets by large nearby targets due to the range sidelobes that result from standard matched filtering. This paper presents a new approach based upon a minimum mean-square error (MMSE) formulation in which the pulse compression filter for each individual range cell is adaptively estimated from the received signal in order to mitigate the masking interference resulting from matched filtering in the vicinity of large targets. The proposed method is compared with the standard matched filter and least-squares (LS) estimation and is shown to be superior over a variety of stressing scenarios.  相似文献   

3.
This paper demonstrates and tests a new algorithm for extracting velocity information from a pulse Doppler radar signal. The system is adaptive and performs weil in the presence of target scintillation. This paper also shows a special steady-state version of the adaptive algorithm. lt is computationally attractive and produces near optimal velocity estimates.  相似文献   

4.
Uniform coherent pulse trains offer a practical solution to the problem of designing a radar signal possessing both high range and range-rate resolution. The Doppler sensitivity provides some rejection of off-Doppler (clutter) returns in the matched filter receiver. This paper considers the use of a processor in which members of the received pulse train are selectively weighted in amplitude and phase to improve clutter suppression. The techniques described are particularly suitable for rejecting interference entering the processor through ambiguous responses (range sidelobes) of the signal. The complex weights which are derived are optimum in the sense that they produce the maximum clutter suppression for a given detection efficiency. In determining these weights, it is assumed that the distribution of clutter in range and range rate relative to targets of interest is known. Thus, clutter suppression is achieved by reducing the sidelobe levels in specified regions of the receiver response. These techniques are directly applicable to array antennas; the analogous antenna problem would be to reduce sidelobe levels in a particular sector while preserving gain. Complex weighting is most successful when the clutter is limited in both range and velocity.  相似文献   

5.
A major technology barrier to the application of pulse compression for the meteorological functions required by a next generation ATC radar is range/time sidelobes which mask and corrupt observations of weak phenomena occurring near areas of strong extended meteorological scatterers. Techniques for suppressing range sidelobes are well known but without prior knowledge of the scattering medium's velocity distribution their performance degrades rapidly in the presence of Doppler. Recent investigations have presented a “doppler tolerant” range sidelobe suppression technique. The thrust of the work described herein is the extension of previous simulations to actual transmitted dispersed/coded waveforms using the S-band surveillance radar located at Rome Laboratory Surveillance Facility. The objectives of the experiment are: 1) to extend the verification of the simulation of the Doppler tolerant technique; and 2) to demonstrate that the radar transmitter, waveform generator, and receiver imperfections do not significantly degrade resolution, performance or reliability of meteorological spectral moment estimates  相似文献   

6.
针对高脉冲重复频率脉冲多普勒(HPRF-PD)体制的相控阵主动雷达导引头中存在的距离遮挡问题,设计了一种新的波形选择策略。首先,利用提出的脉冲重复频率(PRF)波形选择策略,离线计算得到距离对应PRF的波形查找表。然后,通过叉积自动频率控制环路滤波(CPAFCLF)算法预估下个相参处理间隔(CPI)导引头与目标间的径向相对速度,并联合提出的基于Sage-Husa带有速度预测的自适应"当前"统计模型(SH-ACSMVP)算法得到的距离跟踪值,获得下个CPI的距离预测值。在跟踪机动目标场景中,相比于"当前"统计(CS)模型跟踪算法及基于"当前"统计模型的自适应无迹卡尔曼滤波(CAUKF)算法,本文算法得到的距离预测误差更小,误差收敛速度更快。根据此距离预测值从波形查找表中选择波形发射,作为下个CPI的发射波形,实现后续跟踪阶段的抗距离遮挡,提高目标跟踪性能。仿真结果表明了本文所设计波形选择策略的正确性及有效性。  相似文献   

7.
Sparse frequency transmit-and-receive waveform design   总被引:2,自引:0,他引:2  
A computationally efficient algorithm derives complex digital transmit and receive ultra-wideband radar and communication waveforms with excellent arbitrary frequency band suppression and range sidelobe minimization. The transmit waveform minimizes a scalar function penalizing weighted spectral energy in arbitrary frequency bands. Near constant power results from another penalty function for deviations from constant power, or constant power is enforced by a phase-only formulation. Next, a least squares solution for the receive waveform minimizes a weighted sum of suppressed band spectral energy and range sidelobes (for pulse and continuous wave operation), with a mainlobe response constraint. Both waveforms are calculated by iterative algorithms whose updates require only linear order in memory and computation, permitting quick calculation of long pulses with thousands of samples.  相似文献   

8.
A novel range-Doppler imaging algorithm with OFDM radar   总被引:1,自引:1,他引:0  
《中国航空学报》2016,(2):492-501
Traditional pulse Doppler radar estimates the Doppler frequency by taking advantage of Doppler modulation over different pulses and usually it requires a few pulses to estimate the Doppler frequency. In this paper, a novel range-Doppler imaging algorithm based on single pulse with orthogonal frequency division multiplexing(OFDM) radar is proposed, where the OFDM pulse is composed of phase coded symbols. The Doppler frequency is estimated using one single pulse by utilizing Doppler modulation over different symbols, which remarkably increases the data update rate. Besides, it is shown that the range and Doppler estimations are completely independent and the well-known range-Doppler coupling effect does not exist. The effects of target movement on the performances of the proposed algorithm are also discussed and the results show that the algorithm is not sensitive to velocity. Performances of the proposed algorithm as well as comparisons with other range-Doppler algorithms are demonstrated via simulation experiments.  相似文献   

9.
基于3DT的空时自适应单脉冲参数估计算法   总被引:1,自引:0,他引:1  
于佳  沈明威  吴迪  朱岱寅 《航空学报》2016,37(5):1580-1586
空时自适应处理(STAP)是机载预警雷达抑制杂波和干扰的一项关键技术,而多普勒三通道联合自适应处理(3DT)是适合工程实现的降维(RD)STAP方法。STAP目标检测后还需进一步估计目标的角度参数,因此将自适应单脉冲(AM)技术引入3DT,提出了一种高精度联合估计目标速度与方位空间角的空时自适应单脉冲算法。理论分析与仿真实验结果表明,当目标多普勒频率偏离检测多普勒单元中心频率时,该算法能同时减少目标多普勒跨越损失和空时导引矢量失配损失,进而提高输出信杂噪比(SCNR),改善目标测角精度。  相似文献   

10.
A radar waveform design technique which utilizes Lagrange's method of multipliers to control temporal sidelobes and to reduce Doppler sidelobes is described. This classical method of constrained optimization is applied to the problem of synthesizing a radar wave-form where mismatch loss is the objective function to be minimized. The associated constraints are taken from expressions for the composite temporal sidelobes of the cross-correlation response and the peak correlation response where sets of code words are used to modulate a series of radar pulses. The resulting code sets and receiver reference sets are called group-complementary and produce a trench parallel to or on the range axis of the cross-ambiguity surface.  相似文献   

11.
This paper concerns the problem of array shape estimation and tracking for towed active sonar arrays, using received reverberation returns from a single transmitted CW pulse. Uniform linear arrays (ULAs) deviate from their nominal geometry while being towed due to ship maneuvers as well as ocean currents. In such scenarios, conventional beamforming performed under the assumption of a ULA can sometimes lead to unacceptably high spatial sidelobes. The reverberation leaking through the sidelobes can potentially mask weak targets in Doppler, especially when the target Doppler is close to that of the mainlobe reverberation and the reverberation-to-target ratio (RTR) is very high. Although heading sensors located along the array can be used to provide shape estimates, they may not be sufficiently available or accurate to provide the required sidelobe levels. We propose an array shape calibration algorithm using multipath reverberation returns from each ping as a distributed source of opportunity. More specifically, a maximum likelihood (ML) array shape calibration algorithm is developed, which exploits a deterministic relationship between the reverberation spatial and Doppler frequencies causing it to be low rank in the space-time vector space formed across a single coherent processing interval (CPI). In this application, a sequence of overlapped CPI length snapshots of duration less than the CW pulse is used. The ML estimates obtained for each snapshot are tracked using a Kalman filter with a state equation corresponding to the water pulley model for array dynamics. Simulations performed using real heading sensor data in conjunction with simulated reverberation suggest that 8-10 dB improvement in sidelobe level may be possible using the proposed array shape tracking algorithm versus an algorithm that uses only the available heading information.  相似文献   

12.
A coherent train of identical linear FM (LFM) pulses is used extensively in radar because of its good range and Doppler resolution. Its relatively high autocorrelation function (ACF) sidelobes are sometimes reduced through spectrum shaping (e.g., nonlinear FM, or intrapulse weighting on receive). We show how to completely remove most of the ACF sidelobes about the mainlobe peak, without any increase to the mainlobe width, by diversifying the pulses through overlaying them with orthonormal coding. A helpful byproduct of this design is reduced ACF recurrent lobes. The overlaid signal also results in reduced Doppler tolerance, which can be considered as a drawback for some applications. The method is applied to several trains of identical pulses (LFM and others) using several orthonormal codes. The effect on the three important properties of the radar signal: ACF, ambiguity function (AY), and frequency spectrum is presented. The effect on Doppler tolerance is studied, and implementation issues are discussed. The new design is also compared with complementary and sub-complementary pulse trains and is shown to be superior in many aspects.  相似文献   

13.
The clutter performance of coherent pulse trains is examined when the duration of the pulse train is increased to values for which range acceleration effects must be taken into account. The problem of target detection against a clutter background with differential Doppler is studied in terms of the range acceleration effects on the conventional Doppler response. Specifically considered are the consequences on the sidelobe level and width of the main Doppler lobe. The analysis shows that the sidelobe level remains essentially unchanged when the range acceleration mismatch becomes significant. However, the main Doppler response broadens in proportion to the magnitude of the acceleration mismatch. Thus, an increase of the signal duration for better Doppler resolution is useful only until acceleration effects spread the Doppler spectrum of the clutter and eliminate the differential Doppler between targets and clutter.  相似文献   

14.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

15.
The middle pulse repetition frequency(MPRF)and high pulse repetition frequency(HPRF)modes are widely adopted in airborne pulse Doppler(PD)radar systems,which results in the problem that the range measurement of targets is ambiguous.The existing data processing based range ambiguity resolving methods work well on the condition that the signal-to-noise ratio(SNR)is high enough.In this paper,a multiple model particle flter(MMPF)based track-beforedetect(TBD)method is proposed to address the problem of target detection and tracking with range ambiguous radar in low-SNR environment.By introducing a discrete variable that denotes whether a target is present or not and the discrete pulse interval number(PIN)as components of the target state vector,and modeling the incremental variable of the PIN as a three-state Markov chain,the proposed algorithm converts the problem of range ambiguity resolving into a hybrid state fltering problem.At last,the hybrid fltering problem is implemented by a MMPF-based TBD method in the Bayesian framework.Simulation results demonstrate that the proposed Bayesian approach can estimate target state as well as the PIN simultaneously,and succeeds in detecting and tracking weak targets with the range ambiguous radar.Simulation results also show that the performance of the proposed method is superior to that of the multiple hypothesis(MH)method in low-SNR environment.  相似文献   

16.
A general procedure for analyzing ground clutter effects in airborne pulse Doppler radars is described. The quantity computed is the expected clutter power at the output of any specified range gate/ Doppler filter processing cell. The procedure has been computerized and is quite general with respect to antenna gain pattern, clutter cross section variation, PRF, pulse and range gate shapes, and the various receiver processing functions. It is applicable only to distributed ground clutter and linear processing, and excludes the dynamic effects of continuous antenna scanning. To exemplify the use of the procedure, two studies conducted for a postulated high PRF radar are described, and the results are presented.  相似文献   

17.
自适应阵列(或称自适应波束形成)目前已广泛应用到雷达、声纳和通信领域中用来抑制各种干扰(有意的干扰,杂波干扰和多用户干扰等)。在雷达应用中,为了减轻脉冲欺骗式干扰或旁瓣目标并利用单脉冲雷达来准确测量目标波达方向.要求自适应方向图具有低副瓣和稳定的主瓣形状。在实际应用中,各种失配误差将降低自适应阵列的性能.这些误差包括由于目标的波达方向不精确引起的信号指向误差,由通道失配和位置扰动引起的阵列校准误差和由小样本教引起的协方差矩阵估计误差。在此情况下,自适应波束形成的性能大大下降(干扰抑制性能变差。主瓣失真和高的副瓣)。已提出了一种基于二次约束的集成峰值副瓣控制(integrated peak sidelobe control,简称IPSC)方法。该方法可以精确地控制峰值副瓣电平并产生具有稳定的主瓣形状的自适应方向图。研究IPSC中目标信号的影响和信号消除方案以进一步提高IPSC的性能。并将IPSC方法和最新提出的基于二阶锥规划(second-order cone programming,简称SOCP)的分布式峰值副瓣控制(distfibuted peak sidelobe control,简称为DPSC)新方法在性能上进行了比较。仿真结果表明。在干扰抑制性能和方向图控制质量方面IPSC比DPSC性能优越。此外IPSC比DPSC计算高效。  相似文献   

18.
In low pulse-repetition frequency (PRF) pulse radars, signal-to-noise ratio (SNR) is usually calculated on a per pulse basis and this value is then multiplied by the number of pulses integrated to obtain the SNR for a given duration of target illumination. In high PRF pulse Doppler radars, SNR is usually calculated by using the centerline power of the transmitted signal spectrum as the target return power because the centerline is kept in the receiver and returns of the PRF lines are notched out [1]. We show here that both methods of SNR calculations are entirely equivalent for matched transmit-receive radar systems.  相似文献   

19.
A new technique for implementing the enhanced image processing (EIP) algorithm for the formation of inverse synthetic aperture radar (ISAR) images is presented. The EIP algorithm is required when, during the formation of an image, scattering centers on a target move out of range and/or Doppler resolution cells. This phenomenon is common for high resolution imagery of practical-sized targets. The method presented is based entirely on the fast Fourier transform (FFT) and therefore does not require the interpolation schemes that are prevalent in the standard EIP implementation. A brief review of the theory of radar imaging is presented to establish the notation for the work. Following the presentation of the new algorithm, a simple example is given to demonstrate the effectiveness of the new technique. In addition work is presented that demonstrates the processing required to reduce the sidelobes in imagery generated by the EIP technique  相似文献   

20.
基于脉组间频率步进的合成超宽带距离像及速度分析   总被引:1,自引:0,他引:1  
杨利民  苏卫民  顾红 《航空学报》2010,31(10):2046-2055
 对脉组间频率步进信号进行信号处理可直接获得合成超宽带(UWB)距离像及目标速度信息,但由于多普勒色散引入的快速傅里叶变换(FFT)输出失配误差和距离多普勒耦合,导致距离像的失真。介绍消除多普勒色散的影响的方法,分析且补偿距离多普勒耦合对距离像的影响,进一步讨论由测速误差产生的补偿量化误差对距离像的影响,并推导由此导致的距离走动公式。提出的迭代二分逼近法使速度分辨提高 N 倍( N 为脉组个数),从而得到目标真实高分辨距离像。仿真实验结果表明多普勒色散得到消除且 N 的选取更加灵活。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号