首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
一枚Chaff火箭观测到的湍流谱   总被引:1,自引:1,他引:0  
在一个异常强水平风速和极端大风切变层内, 垂直速度扰动谱表明几个相当重要特征:(1)垂直速度扰动谱有二个区域, 一个在低频区, 有谱斜率一1.65, 这个谱斜率接近于惯性子区内-5/3谱斜率, 另一个在高频区, 有谱斜率-7.11, 它接近于粘性子区内-7谱斜率.(2)垂直速度扰动谱有一个崩溃点, 约位于70m, 这与计算的内尺度有好的一致.(3)由垂直速度扰动谱计算的湍流能量耗散率是0.087m2·s-3, 这比MAP/WINE试验中得到的值约大一个数量级.   相似文献   

2.
THEMIS卫星观测到通量传输事件(FTE)的同时,也在磁层侧涡流区域观测到强磁场扰动现象.利用快速傅里叶变换分析磁场扰动频谱特征发现:大约在FTE的扰动频率(约0.1Hz)处,功率谱密度达到峰值;在质子回旋频率(约1Hz)至64Hz的频段内,功率谱密度随着频率的增大而减小,服从幂律分布P0 f-α.因此,可以认为这些磁场扰动为低纬边界层中的动力学磁场湍流.研究结果表明,当低纬边界层(Low Latitude Boundary Layer,LLBL)中卫星相对磁层顶或FTE的位置越来越远时,功率谱密度与功率谱斜率α(幂律指数)降低,但FTE所在的方位角或低纬磁层顶的磁地方时对幂律指数α和功率谱密度没有显著影响.这些观测特征表明移动的FTE是磁场湍流的源.磁层顶上的大规模扰动(如FTE)和相关的磁场湍流从动力学尺度揭示了磁鞘与磁层的类黏滞相互作用.然而低纬边界层中FTE磁层侧涡流形成所需的黏滞性是否可由磁场湍流来提供还需要验证.   相似文献   

3.
使用Chaff和落球火箭测量的垂直速度和温度数据研究湍流结构和它的产生.结果表明湍流存在多层桔构.在强湍流层,动力不稳定,和MST雷达回波功率间有好的相关,认为强湍流层和雷达回波与动力不稳定有关.水平速度垂直波数谱表明,观测谱与他和谱模式有极好的一致,认为强湍流层和雷达回波通过动力不稳定直接与重力波饱和相联系.   相似文献   

4.
使用1987年夏季MAC/SINEcampaign期间在挪威北部的Andenes发射的5枚chaff火箭垂直速度数据研究了70—100km高度范围内大气垂直速度扰动垂直波数谱.发现垂直速度垂直波数谱在39×10-4m-1处有1个谱缺口.在大于这个谱缺口的垂直波数范围,垂直速度垂直波数谱与饱和谱模式有好的一致.在小于这个谱缺口的垂直波数范围,垂直速度垂直波数谱有谱斜率-1.87和谱振幅比饱和谱振幅低1个量级,认为在低波数,除重力波外的其它地球物理过程存在于垂直速度扰动中.   相似文献   

5.
针对北京大学空间物理与应用技术研究所研制的两台大气波动监测仪近三年的观测数据,对这一时段内所观测到的重力波和次声波周期尺度扰动的形态特征、谱结构特征及其在时间分布上的统计特征进行了分析. 给出了几例雷暴、地震等事件中观测到的大气扰动,并揭示了这些事件期间观测到的与地面大气扰动周期尺度相类似的电离层扰动. 结果表明,北京大学研制的大气波动监测仪可有效记录到地面的微弱大气扰动,观测数据可用于进行岩石圈-大气层-电离层之间的耦合研究.   相似文献   

6.
基于DFT的水射流红外热像频域时空分析   总被引:1,自引:0,他引:1  
基于二维离散傅里叶变换及空间频谱分析,对水射流湍流脉动的空间尺度进行了研究,得到了由红外辐射温度表征的被动标量湍流场在对流区、耗散区、惯性子区的特征空间尺度及其时间演化规律.对射流不同区域的关心点重新采样,得到湍流场中关心点的时间序列,利用一维离散傅里叶变换,分析了对流区大尺度涡中心、惯性子区小尺度涡中心、耗散区及射流轴心线上各关心点的湍流波动特征.计算了时间序列频谱的分形维数,研究了自由湍流不同尺度区间上述各关心点湍流脉动的分形特征.   相似文献   

7.
基于COSMIC卫星观测的2006年12月29日到2008年1月3日30°-40°N纬度内的温度剖面,分别利用垂直滑动窗、双滤波器和单滤波器三种方法计算低平流层重力波的扰动和势能,获得重力波扰动和势能随高度、经度的分布以及多时间尺度变化特性,分析重力波扰动势能与背景温度及风场的变化趋势和特点.比较三种方法得到的结果发现:垂直滑动窗方法只能去除大垂直尺度的背景,无法抑制小尺度的扰动,其得到的结果误差较大;双滤波器法对温度剖面中的大尺度背景和小尺度扰动都能很好地抑制;单滤波器法得到的重力波扰动中基本不包含垂直方向的大尺度背景,但是包含一些小垂直尺度的扰动.因此,对于垂直波长为10km左右的重力波,采用双滤波器法合适;如果需要得到小尺度重力波的变化特性,采用单滤波器法合适.采用双滤波器法无法得到势能随高度的变化,而采用单滤波器法能够给出每月势能随高度的分布.对30°-40°N纬度内的重力波参数进行统计分析得到重力波扰动、势能与背景温度和水平风场的关系.   相似文献   

8.
使用MAP/WINE和MAC/SINE两次试验中测量的25m高分辨率水平速度数据和1km低分辨率温度数据,研究极区中层顶区域重力波谱的季节变化.温度的直接测量使计算的谱振幅和Richardson数更接近真实大气.结果显示,极区中层顶区域水平速度垂直波数谱的斜率和振幅存在相当大的变率,这些大的观测变率用各种饱和模式及普适垂直波数谱不能解释.然而平均垂直波数谱显示了明显的季节变化,在夏季,平均谱具有饱和特性;在冬季,平均谱具有非饱和特性.这意味着饱和过程存在于夏季而不是冬季.因此,夏季比冬季应有更强的湍流.这个结果与湍流季节变化的观测大致一致.从Brunt-Vaisala频率N和水平风切变计算的Richardson数Ri剖面也显示出季节差异,Ri<1/4的动力不稳定区出现在夏季,而Ri>0.4的稳定区出现在冬季.这些不稳定区与夏季谱结合很好,而稳定区则与冬季谱结合很好.  相似文献   

9.
利用激光雷达对北京地区上空Na层进行持续观测,通过连续三年累积的夜间观测数据对北京地区重力波活动及其波谱进行研究.根据重力波的线性理论计算,得到北京地区上空的大气密度扰动规律、空间功率谱和时间频率谱.通过选择重力波波长在1~8 km,具有特定波长以及特定周期为60,45,25 min的重力波活动辅助研究重力波的季节变化规律,结果表明北京地区重力波大气密度扰动具有夏季大、冬季小的活动规律.结合波源与背景风场的季节性变化规律,分析得出北京上空重力波活动季节性变化的主要原因为青藏高原地形和对流因素与我国北方地区季节性背景风场共同作用的结果.  相似文献   

10.
中层小尺度风切变的观测   总被引:2,自引:2,他引:0  
十个中层大气风剖面于1988年夏季在北欧的Andφya(69°N)上空用装有铝箔的火箭测得。使用了一种新型铝箔,使其测量的高度范围覆盖103-85km,测量的高度分辨率为25m.观测的风切变剖面显示了一多层结构,一般由3-9个切变层组成,切变层厚度通常小于200m.观测到高达40-90m/s/km的强风切变,且如此大的切变存在于所测区间内不同高度上。在一个连续测量的五个风切变剖面中,有寿命至少2.5小时,相位向下运动速度为0.4m/s,以及最大切变振幅为180m/s/km的强风切变,显示了稳定和持续特性。   相似文献   

11.
本文根据时空变化风场中声重波演变的基本方程,详细讨论了声重波的基本参量在垂直切变风场中的变化方式。结果表明,沿群路径上波长、相速和传播方向的变化取决于风场的垂直结构以及波风之间的相对方位。声重波扰动动能的变化与波空间尺度的变化存在一定的关系。对于上行重力波分支,波包动能的增加伴随着波长变长,波包动能减小伴随着波长变短;对于上行的声波分支,情况则相反。文中还讨论了常定的声重波波列在垂直切变风场中的传播问题,分析表明,声重波能量密度增加伴随着本征频率减小,能量密度减小伴随着本征频率增加。   相似文献   

12.
At mesospheric heights, VHF radar measurements reveal strong signal power bursts which have the same period as simultaneously observed short-period velocity oscillations. Both the power bursts and the velocity oscillations occur in layers of maximum vertical wind shear generated by tidal or long-period gravity waves with apparent vertical wavelengths of the order of 10 km. A comparison with similar power bursts measured in the troposphere during a jet stream passage leads to the conclusion that the short-period velocity oscillations are due to a Kelvin-Helmholtz instability. This instability in turn generates superadiabatic lapse rates so that strong turbulence can occur which produces the observed signal power bursts.  相似文献   

13.
本文给出在太阳风超声速流动条件下,离子静电孤波的传播特性,结果与Helios1,2卫星观测的静电离子噪声做了比较。离子声波扰动的非线性发展使太阳风等离子体呈规则的小尺度起伏,离子声波在马赫锥外传播,因此理论预言密度起伏不沿着太阳风速度方向,而是在横向方向.   相似文献   

14.
15.
太阳风中动力论Alfven波湍流谱(b)二次激发   总被引:2,自引:2,他引:0  
根据行星际Alfven湍流是由动力论Alfven波集合形成的模型理论。将行星际Alfven湍流分为三个区域:湍流耗散区、二次激发区和湍流惯性区。并对各区湍流谱的特性分别给出解释。由动力论Alfven波的二次激发和衰减,解释了太阳风高速流质子温度高于电子的事实。   相似文献   

16.
利用中国廊坊台站钠荧光多普勒激光雷达82h垂直风和水平风观测数据,统计得到中间层顶区域中存在10m·-1量级的垂直风扰动和纬向风扰动,其中垂直风扰动远远超过平均风速为-0.015m·-1的背景垂直风速.根据三维准单色重力波的极化关系和色散关系,对高中低三种频率重力波产生的垂直风扰动进行仿真,结果显示在满足短周期、大纬向风扰动条件下,高频重力波能够产生最大10m·-1量级的垂直风扰动,中频重力波能够产生10m·-1以内的垂直风扰动,低频重力波能产生1m·-1以内的垂直风扰动.理论条件下准单色重力波能够产生10m·-1量级的垂直风扰动,钠激光雷达观测到的最大10m·-1量级的垂直风扰动真实存在.研究结果可对高层大气垂直风场探测、垂直风场模拟和重力波参数化提供依据.   相似文献   

17.
太阳风中动力论Alfven波的湍流谱(a)朗道衰减   总被引:1,自引:0,他引:1  
提出一个太阳风中Alfven脉动湍流的新模式,动力论Alfven波是Alfven波和离子声波非解耦的新波模。由太阳向外传播的各种波长的动力Alfven波的非线性相互作用推导出动力论Alfven脉动湍流功率谱Pk,在Alfven半径以外,Pk∝k-3/2,而在Alfven半径以内,由太阳附近的Pk∝k-1变化成Pk∝k-3/2动力论Alfven脉动在Alfven半径以内完成朗道衰减。新模式克服了以前理论模式遇到的困难。   相似文献   

18.
Balloons lead to the highest vertical resolution of air velocity data actually attainable from atmospheric soundings. However, the pendulum-like motion of the balloon-gondola system may significantly affect these measurements if the distance between balloon and gondola is large. This may prevent the study of the highest vertical resolution range obtained. Also, if not appropriately discriminated, these fluctuations could be confused with small scale or turbulent oscillations of the atmosphere. It is shown from simple energy considerations that horizontal and vertical wind velocity perturbations introduced in the observations by the pendulum motion may usually be comparable to typical measurements. Vertical velocity data that were obtained with an instrumented gondola in a zero pressure balloon, which typically reach the lower stratosphere, are analyzed and found to be in agreement with the above statements. The pendulum-like behavior in this sounding seems to be stimulated by the buoyant oscillation of the atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号