首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
文中通过压气机叶片“修型”叶栅和常规叶栅的对比实验 ,研究了“修型”叶栅栅后三维流动特征。试验结果表明 ,对常规压气机叶片端部尾缘进行局部修型 (即改变叶片的几何形状 ,但与“端弯”方式不同 ) ,在叶栅损失系数基本不变或略有下降的前提下 ,可以有效地改善和控制栅后出口气流角沿叶高的分布 ,以满足下游动叶进口气流方向的要求。平面叶栅试验结果还表明 ,尽管对常规叶栅端部尾缘实施局部修型 ,减小了端区的叶片出口构造角 ,但对整个气流转折角影响不是太大。同时 ,叶栅自身的流通能力基本不受影响 ,甚至有所改善。此技术已成功地应用于多级压气机和喘振裕度的改善、效率的提高以及压气机不稳定脉动压强 (叶片激振动 )和乱分离的抑制  相似文献   

2.
弯掠叶片气动性能的实验研究   总被引:2,自引:1,他引:1  
与直叶片相比较 ,对一种具有前掠和正弯积迭线的独特的压气机叶片进行了实验研究。在不同位置采用五孔探针测量了两种叶栅的气动参数并在叶片表面做了墨迹流动显示。结果表明弯掠叶栅端部损失降低而叶展中部损失增加 ,但相应的端部扩压因子有所减小。此外该叶片吸力面上形成了有助于防止低能流体在角区积聚的反C型压力分布。弯掠叶栅改善了端壁角区内的流动并显著降低了叶栅总损失  相似文献   

3.
采用五孔探针对常规直叶栅、正弯叶栅及反弯叶栅的出口流场进行了详细实验研究,结果表明反弯叶片能够减少叶片两端负荷,从而改善了两端壁区域的流动,采用反弯叶片可有效地减少叶栅中流动损失,提高叶栅流通能力,因此反弯叶片可望用于改善压气机的流动性能。  相似文献   

4.
为了研究冲角对正弯曲叶片压气机叶栅气动性能的影响,在平面叶栅低速风洞上,对具有可控扩散叶型(CDA)的直叶片,正弯曲15°和20°弯曲叶片压气机叶栅在0°,±6°和±10°冲角下进行了实验,获得了不同冲角下不同弯曲角度叶栅出口流场的能量损失系数和叶片表面静压系数等的分布。与直叶栅相比,叶片正弯曲后叶栅总损失在所有冲角下均得到了降低,在正冲角下,叶栅端部流动状况得到改善,在负冲角下,叶栅流道中的流动相对于直叶栅改善不明显。直叶栅在10°冲角下发生了遍布整个流道的分离流动,而正弯曲叶片的采用则削弱了流动的分离。  相似文献   

5.
张华良  王松涛  王仲奇 《推进技术》2007,28(4):362-366,387
通过数值模拟,分析了叶片周向弯曲对不同转角的压气机叶栅内分离结构和叶栅损失系数的影响。折转角分别为37,°46°和54°;冲角分别为±5°和±10°,弯角分别为±10,°±20°,±30°。结果表明,在不同折转角下,叶片正弯的表现不同:折转角较小时,正弯增强了吸力面的二次流,叶栅总损失增加;中等折转角时,叶片正弯可以有效遏止角区分离,并改善吸力面分离型态;大折转角时,较小的叶片正弯可以改善流动,但弯角大于20°时,流动重新恶化。反弯使得叶栅内角区分离趋势增加,气动性能明显降低。不同冲角下,弯角对损失影响的变化趋势基本相同,只是正冲角增强了这种趋势,负冲角减弱这种趋势。  相似文献   

6.
实验研究了变工况条件下由不同掠弯叶片组成的平面扩压叶栅出口总压损失及二次流矢量分布,并给出了叶片表面墨迹流动显示结果。研究表明弯掠叶栅能够最大程度地改善角区流动,避免流动分离,叶栅出口总压损失对冲角变化不敏感,正冲角下总损失增加较小且吸力面角区也不存在明显的分离。通过增大中径处的设计冲角或进行弯掠匹配优化进一步提高变工况性能的潜力巨大,对提高压气机性能具有实际价值。   相似文献   

7.
给定不同型式的进口边界层,在两种不同亚音速条件下对一平面扩压静叶栅的弯叶片流场进行了数值模拟。结果表明弯叶片对扩压叶栅的改善的能力受进口边界层的特征影响。这种影响分为两个方面:(1)边界层厚度的影响和(2)边界层动量损失厚度的影响。边界层越厚或动量损失厚度越大,在低马赫数条件下弯叶片对吸力面角区密流增加越明显,从而更大程度地提高了端区的流动性能,降低了叶栅损失。在高马赫数条件下,若边界层越厚或动量损失厚度越大,角区密流虽变化不大,但因端区损失较大,其性能的提高会给叶栅总性能的改善带来较大的收益。   相似文献   

8.
一种叶顶叶栅结构对压气机间隙流动的影响   总被引:1,自引:0,他引:1  
为减小压气机间隙流动带来的流动损失,提出了一种新的叶顶结构,即在常规叶片叶顶上构造出由数个小叶片组成的叶栅.通过对具有该结构叶片的三维流场进行数值模拟,分析了端壁移动对压气机间隙流场的影响.结果表明:该结构明显改善了叶顶附近的流动状况,从泄压和导流两方面抑制了叶顶附近流体从压力面向吸力面的泄漏,有效削弱泄漏涡的强度,进而减小泄漏涡扩散带来的损失,提高了压气机气动性能,相比常规叶片叶栅出口总压损失系数减小达1.158%.   相似文献   

9.
采用弯-掠叶片的压气机叶栅变冲角性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用经过实验数据验证的CFD软件对采用不同掠型叶片的压气机叶栅±20°冲角范围内性能进行了数值研究.结果表明,在任一冲角下,与直叶栅比,前掠和弯掠叶栅中静压分布呈反"C"型规律,端部损失下降,中部损失增加,后掠叶栅则情况相反;随冲角增加,前掠和弯掠叶栅中低能流体在中部积聚增多,损失增加明显;算例中,尽管叶栅总损失有所增加,但弯掠叶栅变工况特性好,可最大限度控制附面层流体在端区积聚,避免角区分离,从而显著加大压气机稳定工作区间,对提高航空发动机总体性能意义较大.  相似文献   

10.
为了更好地控制压气机静叶角区分离,结合翼刀和涡流发生器的流动控制思想,提出一种在叶栅通道前缘端壁设置小叶片的新型流动控制手段。以某高负荷轴流压气机叶栅为研究对象,基于数值方法深入分析了不同周向位置和安装角的小叶片对流场的影响。结果表明:小叶片存在提升叶栅气动性能的最佳周向位置和安装角范围。在近失速工况附近,小叶片可减缓角区分离,提高全叶高的扩压能力,但会不可避免地增加中间叶高位置处的流动分离和气动载荷;小叶片可减少角区分离损失和尾迹损失,提高各流向位置处的静压系数。小叶片能阻碍马蹄涡压力面分支发展,减缓叶栅前缘附近的横向二次流动。从小叶片叶顶泄漏的诱导涡可将马蹄涡压力面分支推向流向,带走端壁和角区附近的低能流体,从而削弱通道涡强度。  相似文献   

11.
局部附面层吸除对高负荷扩压叶栅气动性能的影响   总被引:1,自引:0,他引:1  
实验研究了低速条件下局部附面层吸除对高负荷扩压叶栅气动性能的影响.采用五孔气动探针测量了叶栅出口截面气动参数,并对叶片表面静压进行了测量,详细分析了局部吸气方式、吸气量和吸气位置对叶栅出口截面总压损失和负荷能力的影响.结果表明,采用吸力面两端吸气和中间吸气方式均能够有效吸除叶栅流道内低能流体,增加叶栅的气动负荷,从而提高叶栅的气动性能;采用吸力面两端吸气对叶栅气动性能的改善要优于吸力面中间吸气;叶栅气动性能的改善主要在靠近叶展中部区域,而对角区核心区和端部区域的影响并不明显.   相似文献   

12.
大间隙涡轮叶栅流场结构的研究   总被引:2,自引:0,他引:2  
对具有 3.6 %相对叶顶间隙涡轮叶栅的三维流场进行了实验和数值模拟 ,分析了大间隙涡轮叶栅流道内的涡系结构。结果表明在叶顶间隙内部和上半叶展出现了复杂的分离涡系 ,在上半叶展存在叶顶泄漏涡、上通道涡、吸力侧脱落涡、压力侧叶顶脱落涡和被泄漏流吹向下游的尾缘涡系的相互作用。  相似文献   

13.
汪亮  尚东然  朱榕  季路成 《推进技术》2019,40(6):1285-1292
为研究被动式涡流发生器抑制压气机叶栅横向二次流以控制角区分离的作用,设计了在叶栅内部端壁处加装涡流发生器的控制方案,采用数值模拟的方法,详细分析了叶栅流场特性。结果表明:涡流发生器可以有效地抑制叶栅内部横向二次流,改善角区流动,在最佳控制方案中,总压损失系数下降8.1%;放置于叶栅内部的涡流发生器能阻挡气流的横向流动,其尾部产生的流向涡与横向迁移的端壁附面层相互作用,抑制了通道涡向吸力面的发展,并将主流高能流体卷入角区,增加角区流体动量;涡流发生器的长度和高度都会影响流向涡的强度,流向涡的涡核高度与涡流发生器高度一致,最终的控制效果由涡流发生器的长度和高度共同决定,只有当它们被合理选择,控制方案才能获得最佳控制效果。  相似文献   

14.
翘曲端壁对大折转角压气机叶栅流动的影响   总被引:1,自引:1,他引:0  
研究了翘曲端壁对大折转角压气机叶栅流动的影响.结果表明:翘曲最高点位于压力面时效果较好,翘曲高度为2%叶高时出口总压损失下降约5.8%;而翘曲最高点位于压力面与吸力面之间时效果则不理想;翘曲高度为5%叶高、翘曲最高点距压力面为0.25倍节距时出口总压损失增加约3.4%,此时端壁附近压力梯度呈先顺后逆变化,低能流体由压力面端区迁移至10%叶高处与吸力面附近低能流体汇合,增加了流道内二次流强度;当来流攻角不为零时,下端壁翘曲所构造的反向压差对于减小二次流强度、降低出口总压损失的效果仍比较明显,+3°攻角下出口总压损失减小约5.6%,-3°攻角下出口总压损失减小约3.5%,但同时其导致的负荷沿径向重新分配也将使得上端壁附近流动状况也发生改变.   相似文献   

15.
吸力面上气膜冷却对涡轮叶栅流场影响的实验研究   总被引:5,自引:0,他引:5  
陈浮  宋彦萍  王仲奇 《航空动力学报》1999,14(2):161-165,219
利用气动探针测量和墨迹显示方法,对不同实验方案下,带吸力面气膜冷却的某型涡轮导向器叶栅流场结构进行了实验研究。结果表明,冷气射流与燃气主流的掺混以及卵型涡的形成,使得吸力面根部出现了与通道涡旋向相反的涡系;卵型涡始终以一定形式存在于叶片表面,直到叶栅出口与尾迹相互作用后才达到均匀状态;冷气射流很难进入到通道涡分离线与端壁所形成的三角形区域中,通道涡分离线明显向端壁方向下移。   相似文献   

16.
隔板与机匣之间留有间隙,间隙的存在势必会对超声速膨胀器的内部流场和总体性能产生影响,为了获得超声速膨胀器内部间隙流动的流动细节,采用三维雷诺平均Navier-Stokes方程和标准k-ε湍流模型,就顶部间隙对超声速膨胀器流动特性的影响进行了数值研究。结果表明:膨胀流道出口斜激波导致吸力面压力高于压力面,隔板尾缘附近部分泄漏流体经间隙流回压力面侧;间隙的存在导致吸力面进口及中、后部近下端壁压力上升,而压力面前缘附近压力下降,对比同一隔板位置,间隙高度每增加1%喉部高度,超声速膨胀器隔板载荷系数最高下降2.6%;端壁损失和斜激波损失降低,但产生了泄漏损失,三维流道内总的流动损失增加,膨胀器效率降低,本文研究范围内效率最多下降8.8%;马蹄涡、泄漏涡及二者之间的相互作用是顶部区域的主要涡系结构;前缘附近气流经间隙流到吸力面侧和尾缘附近泄漏流体越过间隙重新流回压力面侧是间隙内气流的主要运动形式。  相似文献   

17.
射流旋涡发生器控制大折转角扩压叶栅二次流   总被引:10,自引:4,他引:6  
将射流旋涡发生器引入到某折转角为60°的扩压叶栅端壁二次流控制中,研究了射流方向和射流总压对扩压叶栅气动性能及栅内流动的影响.结果表明:当射流旋涡发生器侧向倾角为0°时,仅采用不足扩压叶栅进口流量0.5%的射流流量,即可显著减少栅内损失.射流旋涡有效阻碍和推迟了通道涡发展,在下洗侧将主流流体卷入端壁附面层内,而在上洗侧将低能流体带入主流中,从而减少了角区低能流体聚积,减弱了吸力面的分离流动.当射流进口总压采用与扩压叶栅进口相同的总压时,总压损失减小21.5%,且射流进口总压越大,其控制效果越明显.   相似文献   

18.
高负荷叶片弯曲对壁面流动的影响   总被引:2,自引:0,他引:2  
测量了低展弦比高负荷涡轮直叶片和正、反弯叶片叶栅端壁和叶片表面静压及流道内损失沿流向的发展, 并对端壁和叶片吸力面上的流动进行了墨迹显示。实验结果表明:叶片正弯增大了叶栅进口段逆压梯度, 并在叶片吸力面前部形成反“C”型静压等值线, 加剧了叶片前缘的鞍点分离和吸力面分离线向叶栅中部的收敛。叶片反弯减小了叶栅进口段逆压梯度, 在吸力面进口形成垂直于端壁的静压等值线, 不仅削弱了鞍点分离, 而且造成吸力面上的自由涡层型分离, 避免了吸力面上、下分离线相交, 因此二次旋涡损失大为降低。   相似文献   

19.
吸附式压气机叶栅气动性能计算模拟研究   总被引:3,自引:1,他引:2  
周正贵  王传宝 《航空动力学报》2007,22(12):2036-2042
为考察附面层吸附技术在压气机静子势流区叶型上的应用,采用流场数值计算方法对吸气叶栅流场进行模拟.结果表明:(1)对于高亚声速压气机叶栅,采用吸力面附面层吸除可提高叶栅的扩压度,但不一定能减小流动损失.(2)对于中亚声压气机叶栅,采用吸力面附面层吸除不仅可提高叶栅的扩压度而且能减小流动损失.(3)如果叶片吸力面靠后缘处有流动分离,吸气位置在分离区的上游较远处可抑制分离,若在分离区附近可能不利于抑制流动分离.   相似文献   

20.
通过定性推导分析了复合弯曲对叶栅吸力面静压分布与端部周向迁移流体折转过程的影响,明确了复合弯曲对大转角高负荷平面涡轮叶栅流场的影响机制,并结合已有仿真结果进行了初步验证。复合弯曲是在反弯叶片吸力面端部进行局部正弯,令叶片压力面反弯、吸力面端部正弯结合叶身反弯的造型方式。研究表明,复合弯曲设计通过改变吸力面低能流体的展向迁移趋势与周向迁移流体的折转趋势抑制了叶栅二次流的发展。一方面,复合弯曲设计调节了叶展中部与叶栅端部附近吸力面逆压梯度与展向静压梯度分布,抑制了吸力面低能流体向脱落涡与壁角涡高损失区的迁移与堆积;另一方面,复合弯曲设计影响了周向迁移流体折转过程,抑制了周向迁移流体向叶栅端部的折转及其折转过程中与吸力面附近流体的掺混。因此,复合弯曲设计能够在常规反弯基础上进一步改善叶栅流场。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号