首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
搅拌摩擦增材制造技术是在搅拌摩擦焊接的基础上发展起来的一种新型固态增材制造技术。针对搅拌摩擦增材制造技术中的重新搅拌和重新加热问题,采用试验和数据方法进行分析,通过Monte Carlo模型计算微观结构演化,通过析出相演化模型计算析出相分布,并进一步计算不同增材层之间的硬度分布,通过与试验测量数据的比较验证了模型的正确性。结果显示,不同增材层之间的晶粒大小和形貌由于重搅拌和重加热的作用而存在差异,同时,温度曲线的变化使粒子数和平均半径发生变化,进而导致力学性能出现差异。在试验验证的基础上,通过数值模拟解释了差异产生的具体机理。  相似文献   

2.
铝锂合金是制造航天运载器贮箱的理想材料,其连接技术也是航天领域所关注的问题.本文综述了典型新一代铝锂合金材料2195及1460铝锂合金的主要焊接方法及其发展现状.与传统钨极氩弧焊、真空电子束焊、变极性等离子弧焊等熔化焊方法相比,新型固相连接技术搅拌摩擦焊由于能够获得更为优质的接头性能,有望在铝锂合金贮箱结构的连接上获得广泛应用.  相似文献   

3.
总结了国内在铝锂合金主合金元素Cu、Li以及微合金元素Mg、Ag、Zn、稀土的(微)合金化效果及作用机理方面的研究结果。在主合金元素的研究方面,重点阐述了铝锂合金强度随Cu+Li总原子分数及Cu/(Cu+Li)原子分数比例增加而提高,但晶间腐蚀(IGC)抗力则随Cu/Li比增加而逐渐降低的规律及相关机理。在微合金化元素研究方面,主要阐述了Mg+X(X=Ag/Zn)添加促进T_1(Al_2CuLi)相形核并提高铝锂合金力学性能的机理,其强化效果的规律表现为:Mg+Ag+ZnMg+AgMg+ZnMg,同时还阐明了添加微量Zn元素提高铝锂合金IGC抗力,而添加微量Ag则降低IGC抗力的现象及其机理;另外,还总结了稀土(RE)元素分别在高Cu/Li比铝锂合金(以T1相为主强化相)及低Cu/Li比铝锂合金[以δ'(Al_3Li)相为主强化相]中的不利影响及有利影响的作用机理。除此之外,简述了国内航天用2195铝锂合金旋压、摩擦搅拌焊、氩弧焊、化铣等应用技术的开发情况。  相似文献   

4.
以复合超高频脉冲方波变极性钨极氩弧(HPVP–GTAW)为热源,Al–5Mg(ER5087)和Al–5Si(ER4043两种焊丝为填丝材料进行铝合金电弧熔丝增材制造,通过控制两焊丝的送丝速度获得不同主要合金元素Mg和Si含量的Al–Mg–Si合金薄壁构件,试验研究不同Mg/Si比及热处理对薄壁构件组织及性能的影响。结果表明:合金组织主要由柱状晶及少量等轴晶组成,呈非均匀分布。调节主要合金元素含量可实现对铝合金增材构件性能的控制,随着Mg/Si比的增加,增材构件的力学性能呈上升趋势,各向同性;经过固溶及人工时效热处理后,增材构件的力学性能得到显著提升,但塑性降低。  相似文献   

5.
2195铝锂合金搅拌摩擦焊接头组织及性能   总被引:2,自引:0,他引:2  
为了研究搅拌摩擦焊(FSW)对2195铝锂合金组织及性能的影响,对5mm薄板进行了不同工艺参数的搅拌摩擦焊接。显微组织分析及力学测试结果表明:合金经FSW后,接头组织由焊核区、热机影响区、热影响区三个明显不同的区域组成。当焊速不变,搅拌头转速ω在700~1300r/min之间变化时,接头抗拉强度随转速ω增大而降低;搅拌头转速不变,焊速υ在60~140mm.min-1之间变化时,接头抗拉强度随焊速υ增大而提高。当υ=140mm.min-1,ω=1000r/min时,焊接接头强度系数达到73%。焊后接头显微硬度发生了较大程度的软化。  相似文献   

6.
针对金属增材制造构件存在微观组织缺陷、残余应力及各向异性等问题,各种组织性能调控技术应运而生。结合近年来超声能场对增材制造组织性能调控的研究工作,详细分析了超声能场在增材制造过程中的“液–固”双重效应,总结了超声能场对增材制造金属材料的显微组织及其表面粗糙度、显微硬度、残余应力、耐腐蚀等性能的影响。研究表明,超声能场使材料内部组织晶粒显著细化、孔隙率降低、耐腐蚀性能提高;同时使增材制造构件显微硬度升高,应力状态向有利于构件性能的残余压应力转变。  相似文献   

7.
铝锂合金研究进展及发展趋势   总被引:1,自引:0,他引:1  
铝锂合金历经三代发展,形成了完善的材料谱系,具有高比强度、高比韧度、高耐损伤的特点,是一种具有替代传统铝合金潜力,高减重效益的轻质合金,被认为是21世纪飞行器和舰船理想的结构材料。本文回顾了铝锂合金的发展历程,介绍了铝锂合金的成分设计思路、主要制备方法、先进应用技术等方面的研究进展,梳理了铝锂合金的发展趋势,指出成本较高是制约铝锂合金进一步大规模应用的主要问题,提出完善铝锂合金产品类型,开展抗疲劳、耐损伤、低密度铝锂合金研制,研究铝锂合金大型零件的整体制造技术,开发开展铝锂合金时效成形技术,激光焊、搅拌摩擦焊等先进连接技术等应用研究方向。  相似文献   

8.
研究了C24S-T8铝锂合金搅拌摩擦焊接头力学性能及微观组织。通过焊接工艺参数的优化,获得了无孔洞缺陷、焊缝质量优异的接头,强度系数约82%。拉伸时塑性变形及断裂集中于焊缝处。基材晶粒呈薄饼状,沿轧制方向拉长;焊核区为细小等轴的再结晶晶粒,平均晶粒尺寸约2.3μm,大部分晶界是大于15°的大角度晶界;热机影响区的晶粒在焊接过程中发生了偏转和变形。C24S-T8铝锂合金基材强化相包括T1相(Al2CuLi)、θ’相(Al2Cu)和S’相(Al2CuMg);热机影响区及焊核区内强化相完全溶解,造成硬度下降。  相似文献   

9.
综述了热机械处理对新型铝锂合金强韧化机制影响的研究,深入分析讨论了热机械处理对铝锂合金晶粒结构和沉淀相等显微组织演变规律的影响。通过热机械处理改变主要沉淀相的析出顺序和析出行为,促进基体形成细小、弥散和均匀分布的以δ′,θ″/θ′,T1,S″S′相为主的联合强化组织,抑制晶界沉淀相的析出和长大以及晶界无析出带的宽化,能够显著改善铝锂合金的强度和塑韧性匹配。经过固溶处理基体溶质原子和空位密度显著上升,淬火后形成这些缺陷过饱和固溶体为随后时效析出提供了动力。预变形和预时效促进了基体细小弥散的沉淀相δ′相或G. P.区均匀形核析出,在高温时效调节和稳定沉淀相尺寸和体积分数,获得T1、θ″/θ′和δ′相混合组织。新型和特殊热机械处理调控主要强化相δ′,θ″/θ′,T1相析出比例、尺寸和取向,细化晶粒和优化晶粒结构。最后指出应开发大规格轧制板材和热锻件的应力时效等新型热机械处理工艺,以满足大型航空飞机和重型运载火箭对轻质高性能铝锂合金需求。  相似文献   

10.
采用KWN模型构建搅拌摩擦焊接中Al-Mg-Si系铝合金沉淀相演化计算模型,通过将屈服强度分为晶粒大小、固溶相和析出相三部分贡献,可以计算平板搅拌摩擦焊后的屈服强度和硬度。进一步研究不同焊后人工时效条件下,焊接平板力学性能变化的机理。结果表明:更长的焊后保温时间有利于搅拌区力学性能的回复;较高的保温温度有利于搅拌区力学性能的快速回复,但是当温度高于200℃时,长时间保温会使母材软化,不利于力学性能回复;通过焊后人工时效不能明显改善热影响区的力学性能。  相似文献   

11.
Ti–6Al–4V适用于多种增材制造技术,但是不同增材技术制造的Ti–6Al–4V组织演变形式不同。以沉积效率最低的选区激光熔化和沉积效率最高的电弧填丝增材制造技术为研究对象,总结了这两种工艺条件下Ti–6Al–4V微观组织的演变形式和拉伸性能的差异。选区激光熔化制造的Ti–6Al–4V组织以α'马氏体为主,使其延展性降低。电弧填丝增材技术制造的Ti–6Al–4V晶粒粗大、存在晶界α相,导致其强度较低。针对这些问题,提出了有效改善性能的方法,同时对这两种增材技术的发展和未来的研究趋势进行了预测。  相似文献   

12.
铝锂合金及其在航天工业上的应用   总被引:3,自引:4,他引:3  
综述了铝锂合金发展的三个阶段及三个阶段铝锂合金的性能特点。重点阐述了Cu、Li等主合金元素以及Mg、Ag、Zn、Mn、Sc、Zr、In和稀土Ce等微合金化元素在第三代铝锂合金中的合金化作用;这些微合金化元素可改变合金中原有析出相的尺寸、形状、分布,或促使新的强化相析出,也可以细化晶粒、控制再结晶。总结了铝锂合金在航天工业中的应用实践及在将来的应用计划。  相似文献   

13.
工艺参数对铝合金摩擦挤压增材组织及性能的影响   总被引:1,自引:0,他引:1  
采用6061-T651铝合金圆棒进行摩擦挤压增材制造(friction extrusion additive manufacturing,FEAM)工艺实验研究,探讨和分析不同主轴转速对单道双层增材试样的增材成形、组织特征和力学性能的影响规律。结果表明:对给定横向移动速度300 mm/min,采用主轴转速为600 r/min和800 r/min均能获得完全致密无任何内部缺陷、厚度分别为2 mm和4 mm的单道双层增材试样,增材整体由细小等轴晶粒组成,增材层间实现冶金连接;800 r/min下工具轴肩的摩擦挤压作用降低,增材层间结合界面呈平直状,塑化金属流动不充分,沉积层宽度较窄、表面成形更粗糙;600 r/min下结合界面经历的塑性变形和热循环更为显著,晶粒细化至6.0μm,但增材界面区软化程度较严重,硬度仅为增材棒料母材的52.7%~56.2%,而800 r/min下界面区的硬度能够达到母材的56.0%~61.3%;在600 r/min和800 r/min下,增材试样均具有优良的综合力学性能,抗拉强度分别达到增材棒料母材6061-T651的66%和70%,而断后伸长率明显较高,分别为母材的212%和169%;与目前其他增材工艺力学性能比较均具有明显的优势。  相似文献   

14.
采用搅拌摩擦点焊–钎焊工艺进行2A14铝合金和AZ31镁合金的连接,使用扫描电子显微镜(Scanning electron microscope,SEM)、能量色散谱(Energy dispersive spectroscopy,EDS)和X射线衍射仪(X–ray diffraction,XRD)研究不同参数下接头的微观组织、化学成分及物相组成,采用电子万能试验机对接头进行拉伸剪切性能测试。研究结果表明,搅拌区主要由Al–Mg系金属间化合物和少量MgZn相、MgZn2相组成;热力影响区主要由富Zn固溶体和Mg7Zn3相组成;热影响区靠近铝合金处的锌钎料没有与其他元素发生反应,靠近镁合金处的锌钎料与镁元素发生反应,生成了Mg–Zn系金属间化合物。当轴肩下压量为0.5 mm,搅拌头旋转速度为950 r/min时,接头的拉伸剪切载荷达到最大值7.6 kN。  相似文献   

15.
针对铝锂合金室温成形性差和热成形性能弱化的难题,利用发现的超低温下伸长率与硬化指数同时提高的双增效应,提出铝锂合金曲面件超低温成形新工艺。通过2195铝锂合金板材在不同温度和热处理状态下的超低温变形行为研究,确定发生双增效应的临界温度为低于-140℃,伸长率可提高至40%以上、硬化指数达到0.44;利用建立的超低温成形工艺实验装置,首次试制出直径200 mm的2195铝锂合金球底曲面件,深径比达到0.55、成形极限提高104%;阐明超低温成形试件壁厚分布规律与回弹规律,最大减薄率为10.3%。  相似文献   

16.
对2 mm厚的01420铝锂合金薄板实现了搅拌摩擦焊接(FSW),分析焊接接头的微观组织形态,研究焊接工艺参数对搅拌摩擦焊接接头成型和接头性能的影响,并与氩弧焊接接头性能相比较.结果表明,当工艺参数选取得当时,焊缝成型较好,表面光洁,焊接接头的强度可达到母材强度的77%,接头的弯曲角可达到180°,均高于氩弧焊接接头.  相似文献   

17.
随着对飞行器性能的要求日趋提高,结构减重成为航空航天制造中的重要任务。铝锂合金由于其轻质高强等优良性能,被认为是极具发展前景与优势的航空航天轻质结构材料。同时,激光焊接技术被认为是最为有效的铝锂合金连接方式之一。但是,由于合金的特性及飞行器制造产业的要求,铝锂合金激光焊接技术仍存在诸多难点,介绍了铝锂合金激光焊焊缝特殊微观组织及常见焊接缺陷,重点讨论了等轴细晶区(EQZ)、焊接气孔、焊接裂纹及接头软化缺陷的形成机理及抑制措施。  相似文献   

18.
为了扩大搅拌摩擦搭接焊在镁合金异种材料的市场应用范围,采用搅拌摩擦搭接焊工艺对AZ31镁合金和LA141镁锂合金进行焊接。借助光学显微镜、维氏硬度计和万能试验机等仪器设备研究了搅拌摩擦搭接焊接头的显微组织,测试了接头的显微硬度和剪切拉伸。结果表明,当旋转速度为1800 r/min,焊接速度在80~120 mm/min之间时,AZ31/LA141搅拌摩擦搭接焊成形良好,无明显缺陷。在相同的焊接工艺参数条件下,上层AZ31和下层LA141前进侧热机影响区的晶粒尺寸均小于后退侧热机影响区的晶粒尺寸,而前进侧热影响区却与之相反,其晶粒尺寸均大于后退侧热影响区的晶粒尺寸。当焊接速度变大时,上层AZ31和下层LA141前进侧热机影响区的晶粒尺寸均随之变小。上层AZ31和下层LA141焊核区的显微硬度值变化趋势不同,前者先变大后变小,而后者却呈现变大的趋势。AZ31/LA141搭接接头拉剪力随着焊接速度的增加呈现先增加后减小的趋势。  相似文献   

19.
通过"搅拌摩擦焊+固溶+人工时效热处理"的方法实现了12 mm厚航天用高强铝合金2A14M的焊接及接头性能改善。研究表明未进行焊后热处理的焊接接头断裂位置位于焊核区,平均抗拉强度为192.3MPa,接头显微硬度呈"几"字形分布,硬度分布峰值位于焊缝区,接头不同特征区域的硬度差高达60。采取的焊后热处理对焊接接头及母材不仅具有细化晶粒、改善组织均匀性及优化强化相分布的作用,还能削弱拉伸过程中尖锐晶界对接头的撕裂作用,从而达到提高接头性能的目的,表现为:焊后热处理使接头内部显微硬度差为20,接头拉伸断裂于焊核区,抗拉强度达到440 MPa,为未进行焊后热处理接头的2.29倍;焊后固溶热处理的搅拌摩擦焊接头其断裂位置在焊核区及母材的几率大致相同,各占约50%,从而实现了提高搅拌摩擦焊接头性能的目标。  相似文献   

20.
扩散焊固相增材制造技术是采用分层实体制造(laminated object manufacturing,LOM)思想,用机加工、化学蚀刻等精密加工方法制作出二维层板结构,然后将层板按照三维结构顺序装配堆叠,通过固相扩散焊连接整体成形,是工业化应用最成熟的固相增材制造方法。介绍了该方法针对不同材料在航空航天、核能、精细化工、船舶、注塑模具等领域已实现工程化的典型应用以及设备制造现状,并预测了未来扩散焊工艺开发与设备制造的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号