首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
We consider the problem of tracking a maneuvering target in clutter. In such an environment, missed detections and false alarms make it impossible to decide, with certainty, the origin of received echoes. Processing radar returns in cluttered environments consists of three functions: 1) target detection and plot formation, 2) plot-to-track association, and 3) track updating. Two inadequacies of the present approaches are 1) Optimization of detection characteristics have not been considered and 2) features that can be used in the plot-to-track correlation process are restricted to a specific class. This paper presents a new approach to overcome these limitations. This approach facilitates tracking of a maneuvering target in clutter and improves tracking performance for weak targets.  相似文献   

3.
IMMPDAF for radar management and tracking benchmark with ECM   总被引:2,自引:0,他引:2  
A framework is presented for controlling a phased array radar for tracking highly maneuvering targets in the presence of false alarms (FAs) and electronic countermeasures (ECMs). Algorithms are presented for track formation and maintenance; adaptive selection of target revisit interval, waveform and detection threshold; and neutralizing techniques for ECM, namely, against a standoff jammer (SOJ) and range gate pull off (RGPO). The interacting multiple model (IMM) estimator in combination with the probabilistic data association (PDA) technique is used for tracking. A constant false alarm rate (CFAR) approach is used to adaptively select the detection threshold and radar waveform, countering the effect of jammer-induced false measurements. The revisit interval is selected adaptively, based on the predicted angular innovation standard deviations. This tracker/radar-resource-allocator provides a complete solution to the benchmark problem for target tracking and radar control. Simulation results show an average sampling interval of about 2.5 s while maintaining a track loss less than the maximum allowed 4%  相似文献   

4.
A typical tracking algorithm takes its input from a peak detector or plot extractor. This process reduces the sensor image data to point measurements and reduces the volume of data that the tracker must process. However, useful information can be lost. This paper shows how the clutter of a peak can be a useful feature for discriminating false alarms and valid detections. The benefit obtained by using this feature is quantified through false track rate on recorded sensor data. On recorded data with difficult clutter conditions, approximately sixty percent of false tracks are rejected by exploiting peak curvature  相似文献   

5.
An analysis of false alarm effects on tracking filter performance in multitarget track-while-scan radars, using variable correlation gates, is presented. The false alarms considered originate from noise, clutter, and crossing targets. The dimensions of the correlation gates are determined by filter prediction and measurement error variances. Track association is implanted either by means of a distance weighted average of the observations or by the nearest neighbor rule. State estimation is performed by means of a second-order discrete Kalman filter, taking into consideration random target maneuvers. Measurements are made in polar coordinates, while target dynamics are estimated in Cartesian coordinates, resulting in coupled linear filter equations. the effect of false alarms on the observation noise covariance matrix, and hence on state estimation errors, is analyzed. A computer simulation example, implementing radar target tracking with a variable correlation gate in the presence of false alarms, is discussed  相似文献   

6.
Sensors like radar or sonar usually produce data on the basis of a single frame of observation: target detections. The detection performance is described by quantities like detection probability Pd and false alarm density f. A different task of detection is formation of tracks of targets unknown in number from data of multiple consecutive frames of observation. This leads to quantities which are of a higher level of abstraction: extracted tracks. This again is a detection process. Under benign conditions (high Pd, low f and well separated targets) conventional methods of track initiation are recommended to solve a simple task. However, under hard conditions the process of track extraction is known to be difficult. We here concentrate on the case of well separated targets and derive an optimal combinatorial method which can be used under hard operating conditions. The method relates to MHT (multiple hypothesis tracking), uses a sequential likelihood ratio test and derives benefit from processing signal strength information. The performance of the track extraction method is described by parameters such as detection probability and false detection rate on track level, while Pd and f are input parameters which relate to the signal-to-noise interference ratio (SNIR), the clutter density, and the threshold set for target detection. In particular the average test lengths are analyzed parametrically as they are relevant for a user to estimate the time delay for track formation under hard conditions  相似文献   

7.
A solution is presented to the problem of finding the best set of K completely unmerged paths through a trellis with M i⩾K states at depth i in the trellis, i=0, 1, 2, . . ., N. Here, `best set' means that the sum of the metrics of all K paths in the set is minimized, and `completely unmerged' means that no two paths pass through a common state. The solution involves using the Viterbi algorithm on an expanded trellis. This result is then used to separate the tracks of K targets optimally in a simplified model of a multitarget radar system. The model includes measurement errors and false alarms, but it does not include the effects of missing detections or merged measurements  相似文献   

8.
In a dense detection environment track-while-scan algorithms will introduce many false tracks when processing is performed on a scan-by-scan basis. The maximum likelihood solution involving all detections on all scans is formulated and evaluated for the initiation problem consisting of false alarms, missed detections, and unresolved detections. A comparison is made between the maximum likelihood solutions including and not including the resolution likelihood and it is shown that the resolution likelihood must be included if the data contain unresolved detections. While the maximum likelihood method (with unresolved detections) does not appear to be implementable in real time without very high speed integrated circuit (VHSIC) technology, it can be used as a standard to which more implementable methods can be compared.  相似文献   

9.
Track formation with bearing and frequency measurements in clutter   总被引:1,自引:0,他引:1  
Target motion analysis from a narrowband passive sonar that yields bearing and frequency measurements in the presence of false detections (clutter) in a low-SNR (low signal-to-noise ratio) environment is discussed. The likelihood function used to compute the maximum likelihood estimation of the track parameters (localization and frequency) incorporates the false alarms via the probabilistic data association technique. The Cramer-Rao lower bound is calculated and results obtained from simulations are shown to be compatible with it. A test of track acceptance is also presented  相似文献   

10.
The conventional approach for tracking system design is to treat the detection and tracking subsystems as completely independent units. However, the two subsystems can be designed jointly to improve system (tracking) performance. It is known that different radar signal waveforms result in very different resolution cell shapes (for example, a rectangle versus an eccentric parallelogram) in the range/range-rate space, and that there are corresponding differences in overall tracking performance. We develop a framework for the analysis of this performance. An imperfect detection process, false alarms, target dynamics, and the matched filter sampling grid are all accounted for, using the Markov chain approach of Li and Bar-Shalom. The role of the grid is stressed, and it is seen that the measurement-extraction process from contiguous radar "hits" is very important. A number of conclusions are given, perhaps the most interesting of which is the corroboration in the new measurement space of Fitzgerald's result for delay-only (i.e., range) measurements, that a linear FM upsweep offers very good tracking performance  相似文献   

11.
In this paper we present an estimation algorithm for tracking the motion of a low-observable target in a gravitational field, for example, an incoming ballistic missile (BM), using angle-only measurements. The measurements, which are obtained from a single stationary sensor, are available only for a short time. Also, the low target detection probability and high false alarm density present a difficult low-observable environment. The algorithm uses the probabilistic data association (PDA) algorithm in conjunction with maximum likelihood (ML) estimation to handle the false alarms and the less-than-unity target detection probability. The Cramer-Rao lower bound (CRLB) in clutter, which quantifies the best achievable estimator accuracy for this problem in the presence of false alarms and nonunity detection probability, is also presented. The proposed estimator is shown to be efficient, that is, it meets the CRLB, even for low-observable fluctuating targets with 6 dB average signal-to-noise ratio (SNR). For a BM in free flight with 0.6 single-scan detection probability, one can achieve a track detection probability of 0.99 with a negligible probability of false track acceptance  相似文献   

12.
In target tracking systems: using GMTI (ground moving target indicator) radars on airborne platforms, the locations of these platforms are available from GPS-based estimates. However, these estimated locations are subject to errors that are, typically, stationary autocorrelated random processes, i.e., slowly varying biases. In situations where there are no known-location targets to estimate these biases, the next best recourse is to use targets of opportunity at fixed but unknown locations. Such targets can be, e.g., static rotators (ground-based radars with rotating antenna), which yield detections in moving target indicator (MTI) radars. It is shown that these biases can be estimated in such a scenario, i.e., they meet the complete observability condition. Following this, the achievable accuracy for a generic scenario is evaluated. It is shown that accurate georegistration can be obtained even with a small number of measurements  相似文献   

13.
Recently, a general framework for sensor resource deployment (Hernandez, et. al. 2004) has been shown to allow efficient and effective utilization of a multisensor system. The basis of this technique is to use the posterior Cramer-Rao lower bound (PCRLB) to quantify and control the optimal achievable accuracy of target state estimation. In the original formulation (Hernandez, et. al. 2004) it was assumed that the sensor locations were known without error. In the current paper, the authors extend this framework by addressing the issues of imperfect sensor placement and uncertain sensor movement (e.g., sensor drift). The crucial consideration is then how these two forms of uncertainty are factored into the sensor management strategy. If unaccounted for, these uncertainties will render the output of the resource manager inaccurate and overoptimistic. The authors adjust the PCRLB to account for sensor location uncertainty, and we also allow for measurement origin uncertainty due to missed detections and false alarms. The work is motivated by the problem of tracking a submarine by adaptively deploying sonobuoys from a helicopter. Simulation results are presented to show the advantages of accounting for sensor location uncertainty within this focal domain of antisubmarine warfare. The authors note that the generic nature of the technique allows it to be utilized within other problem domains, including tracking ground-based targets using unattended ground sensors (UGSs) or unmanned aerial vehicles (UAVs)  相似文献   

14.
In the work presented here, we address parameter optimization for agile beam radar tracking to minimize the radar resources that are required to maintain a target under track. The parameters to be optimized include the track-revisit interval as well as the sequence of pairs of target signal strengths and detection thresholds associated with successive illumination attempts in each track-revisit. The effects of false alarms and clutter interference are taken into account in the modeling of target detection and in the characterization of tracking performance. Based on the detection model and tracker characterization, the parameter optimization problem is formulated. Typical examples of the optimization problem are numerically solved. The optimal solution gives an off-line scheduling of the parameter set. It also provides insight into the selection of a near-optimal parameter set that is appropriate for real-time implementation.  相似文献   

15.
In algorithms for tracking and sensor data fusion the targets to be observed are usually considered as point source objects; i.e., compared with the sensor resolution their extension is neglected. Due to the increasing resolution capabilities of modern sensors, however, this assumption is often no longer valid as different scattering centers of an object can cause distinct detections when passing the signal processing chain. Examples of extended targets are found in short-range applications (littoral surveillance, autonomous weapons, or robotics). A collectively moving target group can also be considered as an extended target. This point of view is the more appropriate, the smaller the mutual distances between the individual targets are. Due to the resulting data association and resolution conflicts any attempt of tracking the individual objects within the group seems to be no longer reasonable. With simulated sensor data produced by a partly unresolvable aircraft formation the addressed phenomena are illustrated and an approximate Bayesian solution to the resulting tracking problem is proposed. Ellipsoidal object extensions are modeled by random matrices, which are treated as additional state variables to be estimated or tracked. We expect that the resulting tracking algorithms are also relevant for tracking large, collectively moving target swarms.  相似文献   

16.
The performance evaluation of multiple-hypothesis, multitarget tracking algorithm is presented. We are primarily interested in target-detection/track-initiation capabilities as measures of performance. Through Monte Carlo simulations, a multiple-hypothesis tracking algorithm was evaluated in terms of 1) probability of establishing a track from target returns and 2) false track density. A radar was chosen as the sensor, and a general multiple-hypothesis, multitarget tracking algorithm was used in the Monte Carlo simulations. The simulation results predict the probability of establishing a track from returns of a target as well as the false track density per scan volume per unit time. The effects of the target radar cross section and the radar power, measured through the mean signal-to-noise ratio (SNR) were studied, as were the effects of detection threshold and track quality threshold. Computational requirements were also investigated  相似文献   

17.
基于X射线成像的焊缝缺陷自动检测技术对提高工业射线检测的自动化水平具有重要意义。焊缝缺陷在线连续检测的实时性要求较高,随着工件厚度的增加,其焊缝X射线实时图像的信噪比变得很低,使得已有的处理算法难以满足实时性以及有效处理缺陷误检与漏检之间的矛盾。针对这些问题,在分析了传统方法在厚壁工件X射线图像焊缝缺陷自动检测中存在的问题基础上,对传统方法进行了改进,提出了双阈值背景消除法和平行焊接方向波形分析法,然后利用所提出算法之间的冗余性和互补性,融合多种分割结果以解决缺陷误检与漏检之间的矛盾。试验结果表明,所提出的缺陷自动检测方法能够在满足实时性要求的同时,实现缺陷检出,有效避免误检。  相似文献   

18.
给出了一种机动多目标雷达视频信号模拟器的软硬件设计方案,它可实时输出所需的多个动目标雷达视频信号,雷达信号的类型、目标的数量、目标的回波特性、目标的运动特性、杂波的类型及参数等均可方便地进行设置。该模拟器可满足各种雷达信号处理算法(如杂波抑制、恒虚警检测、动目标跟踪、多基地数据融合等)的测试与效果分析,以及对雷达信号处理机等进行性能调试与测试的需要。  相似文献   

19.
Track labeling and PHD filter for multitarget tracking   总被引:5,自引:0,他引:5  
Multiple target tracking requires data association that operates in conjunction with filtering. When multiple targets are closely spaced, the conventional approaches (as, e.g., MHT/assignment) may not give satisfactory results. This is mainly because of the difficulty in deciding what the number of targets is. Recently, the probability hypothesis density (PHD) filter has been proposed and particle filtering techniques have been developed to implement the PHD filter. In the particle PHD filter, the track labeling problem is not considered, i.e., the PHD is obtained only for a frame at a time, and it is very difficult to perform the multipeak extraction, particularly in high clutter environments. A track labeling method combined with the PHD approach, as well as considering the finite resolution, is proposed here for multitarget tracking, i.e., we keep a separate tracker for each target, use the PHD in the resolution cell to get the estimated number and locations of the targets at each time step, and then perform the track labeling ("peak-to-track" association), whose results can provide information for PHD peak extraction at the next time step. Besides, by keeping a separate tracker for each target, our approach provides more information than the standard particle PHD filter. For example, in group target tracking, if we are interested in the motion of a specific target, we can track this target, which is not possible for the standard particle PHD filter, since the standard particle PHD filter does not keep track labels. Using our approach, multitarget tracking can be performed with automatic track initiation, maintenance, spawning, merging, and termination  相似文献   

20.
Radar signal processing is particularly important in tracking closely spaced targets and targets in the presence of sea-surface-induced multipath. Closely spaced targets can produce unresolved measurements when they occupy the same range cell of the radar. These issues are the salient features of the benchmark problem for tracking unresolved targets combined with radar management, for which this paper presents the only complete solution to date. In this paper a modified version of a recently developed maximum likelihood (ML) angle estimator, which can produce two measurements from a single (unresolved) detection, is presented. A modified generalized likelihood ratio test (GLRT) is also described to detect the presence of two unresolved targets. Sea-surface-induced multipath can produce a severe bias in the elevation angle measurement when the conventional monopulse ratio angle extractor method is used. A modified version of a recently developed ML angle extractor, which produces nearly unbiased elevation angle measurements and significantly improves the track accuracy, is presented. Efficient radar resource allocation algorithms for two closely spaced targets and targets flying close to the sea surface are also presented. Finally, the IMMPDAF (interacting multiple model estimator with probabilistic data association filter modules) is used to track these targets. It is found that a two-model IMMPDAF performs better than the three-model version used in the previous benchmark. Also, the IMMPDAF with a coordinated turn model works better than the one using a Wiener process acceleration model. The signal processing and tracking algorithms presented here, operating in a feedback manner, form a comprehensive solution to the most realistic tracking and radar management problem to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号