首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 413 毫秒
1.
拉杆转子力学模型的研究   总被引:4,自引:0,他引:4  
 提出了一种力学模型。该力学模型刻画了拉杆转子各部件之间在相互联接处的力学状态和性质。用动态子结构方法时一试验模型拉杆转子进行了理论计算,同时在实验室对模型拉杆转子的固有频率进行测试。由计算和试验的对比分析表明,这种力学模型较好地反映了拉杆转子系统的物理本质。  相似文献   

2.
多转子系统振动分析的子结构耦合矩阵法   总被引:3,自引:1,他引:2  
提出了一种用于多转子耦合系统振动分析的建模方法.将耦合的多转子系统在耦合处分开,把耦合力作为单转子系统上的外力,利用集总参数法和节点的自由振动微分方程通式建立单转子系统的振动方程.通过分析耦合部件作用在耦合节点上的力,得到了多转子系统耦合部件的耦合矩阵;利用耦合矩阵将单转子系统振动微分方程耦合在一起,建立了整个多转子系统的振动方程.通过分析多转子系统的振动方程,解出了多转子系统的固有频率、临界转速、幅频响应曲线、涡动轨迹等.通过两个算例,证实了多转子系统振动分析的子结构耦合矩阵法是可行的,计算结果是可靠的.   相似文献   

3.
子结构传递矩阵法是一种用于计算复杂转子系统动力特性的方法.利用子结构传递矩阵法对某转子系统动力特性进行了计算分析,同时改变不同位置的支承刚度,目的在于探求哪个支承刚度对该转子临界转速的影响最显著.结果表明:低压涡轮后支承的刚度变化对临界转速的影响最显著.  相似文献   

4.
传递矩阵法、有限元素法及及模态综合法是对转子系统进行动力特性分析最常用的方法。通过大量算例, 本文从计算精度、内存、机时等方面对它们进行了对比计算, 并对计算结果进行了分析。在采用模态综合法进行动力特性分析时, 涉及需选取不同的控制参数, 诸如子结构数的多少, 子结构保留模态阶数等, 本文也给出了经验数据。   相似文献   

5.
螺栓联接是转子的一种重要联接形式,螺栓预紧力的大小对转子结构的动力学特性有很大影响。首先根据转子螺栓联接结构的工作范围,确定合理的螺栓预紧力的数值。然后,通过Compbell图方法分析螺栓预紧力对转子临界转速数值的影响。最终通过瞬态动力学的方法验证了Compbell图方法计算的正确性。  相似文献   

6.
针对航空发动机转子振动问题,开展了螺栓法兰联接结构对转子固有特性及不平衡响应的研究。基于有限单元法,结合转子有限元模型及螺栓法兰联接结构的力学模型,建立了考虑螺栓法兰联接的转子动力学模型。基于Newmark-β法求解转子不平衡响应及固有特性,并利用ANSYS仿真软件对结果进行了仿真验证,得到了联接结构刚度对转子固有特性的影响规律。研究结果表明:转子第1阶固有频率对螺栓法兰结构的轴向刚度变化较为敏感;第2阶固有频率对螺栓法兰结构的径向刚度变化较为敏感;第3阶固有频率则对螺栓法兰结构的2种刚度变化均较为敏感;并且转子处的联接刚度会对转子的不平衡响应有一定抑制作用。  相似文献   

7.
为了对3-D有限元转子模型进行动力学减缩,提出基于部件模态综合的旋转子结构方法.该方法利用实模态振型矩阵减缩子结构自由度,不同转速下的减缩陀螺矩阵由转速系数乘以单位转速的减缩陀螺矩阵得到.与复模态减缩相比,避免了重复求解变换矩阵的缺点,减缩精度优于基于Guyan减缩的旋转子结构法.利用该方法减缩了某航空发动机转子模型87%的自由度数.经比较,由Campbell图所得临界转速的最大误差为0.04%,稳态不平衡响应计算结果与原模型也几乎完全相同,使用的内存和计算时间均不到原模型的20%,验证结果证明该方法可行.   相似文献   

8.
双转子临界转速的简易分析方法及应用   总被引:2,自引:0,他引:2  
采用纯弯曲及弯扭耦合两种传递矩阵法和子结构传递矩阵法计算具有畸形结构的双转子系统的临界转速,提出了用线性插值法确定双转子临界转速的简便方法和由不平衡响应系统位能峰值转速确定双转子系统计及阻尼影响的临界转速,本文分析方法有较大的工程应用价值。  相似文献   

9.
环向圈连带冠叶片的动态分析   总被引:4,自引:0,他引:4  
张锦  王文亮  陈向均  臧军 《航空学报》1991,12(9):474-481
 本文将动态子结构方法中链式加载技术与群论算法相结合,提出环向固连带冠叶片动力特性分析的一种新方法。文中列出了分析步骤与具体公式,并有实例的计算结果。该方方法适用于研究具有带冠叶片的单级转子中,“冠”的整体效应。  相似文献   

10.
用模态综合法分析发动机整机振动特性   总被引:2,自引:1,他引:1  
欧园霞  李平 《航空动力学报》1987,2(3):209-214,280-281
本文试图把模态综合法与有限元素法相结合,对发动机转子——支承——机匣系统的整机振动特性进行分析。用状态空间广义模态综合法计算轴对称转子与机匣间的耦合振动,用复模态综合法计算非轴对称转子与机匣间的耦合振动。子结构分析采用有限元素法。转子采用具有粘性阻尼,考虑剪切变形的有限转子元素,用承受非轴对称载荷的截锥壳元素离散机匣。所编制的AROBEC程序可计算发动机整机系统的进动频率、临界转速、稳定性、不平衡响应及瞬态响应。目前该程序已实际应用于三种型号的发动机上,获得了满意效果。   相似文献   

11.
周向均布拉杆转子预紧力的确定   总被引:4,自引:3,他引:1  
李辉光  刘恒  虞烈 《航空动力学报》2011,26(12):2791-2797
对周向均布拉杆转子进行考虑接触的三维有限元应力分析,揭示了不同拉杆预紧力和运行工况下拉杆转子的应力分布及界面接触状态演化规律.计算结果表明:拉杆转子在传递功率和横向载荷时,接触界面会发生局部分离和滑移,导致其承载能力小于整体转子;随着预紧力的增加,拉杆转子能够传递更大的载荷,但最大应力显著增加,降低了材料的强度裕度.根据得到的拉杆转子应力水平、接触界面应力分布及接触界面切向力与法向力的比值,给出了保证转子结构完整性和结构强度要求的拉杆预紧力确定方法,为此类转子预紧力的确定提供了参考.   相似文献   

12.
航天器在轨全过程表面辐射热计算数值仿真研究   总被引:1,自引:0,他引:1  
SUN Bing 《航空动力学报》2010,25(10):2229-2237
对在轨航天器表面辐射热计算进行了全过程数值仿真研究。航天器结构较复杂,针对不同结构进行区域分解,对几何模型进行相应的规则化,同时采用结构化网格和非结构化网格建立通用的计算网格自生成技术。仿真过程重点考虑了任意曲面的网格自动划分和任意形状交界面的数据传递,兼顾几何结构、物理过程、计算精度和计算速度。将有限元法和能束均匀分布法相结合计算角系数和辐射传递系数。将积分法和能束均匀分布法相结合计算外热流。由于在轨航天器表面多用多层隔热组件包裹,针对这部分结构采用节点网络法和控制容积法计算其表面温度,而未被包裹的结构采用有限元法计算其表面温度。对具有辐射换热关系的非连通区域温度场的有限元计算进行了分析和公式推导。最后,用Microsoft VC++6.0编程设计开发了近地轨道航天器表面辐射热计算仿真软件。  相似文献   

13.
以传统的应力-强度干涉模型为基础,考虑了涡轮转子随机结构尺寸、温度应力、转速、外载荷和材料强度等参数的随机性,利用积分随机有限元和Gram-Charlier级数方法对转子局部应力最大处进行可靠性分析.该方法计算结果与Monte-Carlo仿真值比较,二者相对误差非常小,计算结果比较精确,既避免了有限元计算量大和速度慢的情况,又实现了转子随机结构的可靠性计算.   相似文献   

14.
With the high speed, the rotor of magnetically suspended permanent magnet synchronous motor(MSPMSM) suffers great thermal stress and mechanical stress resulting from the temperature rise problem caused by rotor losses, which leads to instability and inefficiency.In this paper, the mechanical–temperature field coupling analysis is conducted to analyze the relationship between the temperature field and structure, and multi-objective optimization of a rotor is performed to improve the design reliability and efficiency. Firstly, the temperature field is calculated by the 2 D finite element model of MSPMSM and the method of applying the 2 D temperature result to the 3 D finite element model of the motor rotor equivalently is proposed. Then the thermal–structure coupling analysis is processed through mathematic method and finite element method(FEM),in which the 3 D finite element model is established precisely in a way and approaches the practical operation state further. Moreover, the impact produced by the temperature and structure on the mechanical strength is analyzed in detail. Finally, the optimization mathematical model of the motor rotor is established with Sequential Quadratic Programming-NLPQL selected in the optimization scheme. Through optimization, the strength of the components in the motor rotor increases obviously and satisfies the design requirement, which to a great extend enhances the service life of the MSPMSM rotor.  相似文献   

15.
针对表贴式永磁电机转子在高速高温状态下转子强度计算问题,提出了考虑磁钢分块结构的转子模型。基于厚壁圆筒理论推导了转子强度计算的解析解,分别计算出碳纤维护套及磁钢的切向应力和径向应力;基于有限元法分析了多种工况下的转子强度,在高速及高温工况下转子所受应力均会增加;对比解析分析结果表明,有限元法及解析法均能准确计算碳纤维护套应力,而磁钢却受到边缘效应的影响,磁钢边缘应力增大,解析分析难以进行精准计算;基于有限元法分析护套与磁钢过盈量,优化了转子结构,提出了过盈量的最优范围。  相似文献   

16.
考虑了铰接式旋翼桨叶绕挥舞、摆振和变距铰的整体刚性运动与桨叶中等弹性变形之间的动力学耦合作用,将直升机机身和传动轴作为弹性体。通过构造一种特殊的24自由度刚柔混合单元得到旋翼/机身耦合系统的周期时变动力学方程,根据Floquet理论对稳态周期解的稳定性进行研究。计算结果表明,旋翼轴的截面刚度对旋翼/机身耦合系统的气动/机械稳定性有一定的影响。   相似文献   

17.
王存 《推进技术》2021,42(6):1372-1379
为解决对转双转子航空发动机临界转速求解的难题,满足转子动力学设计需求,结合商业有限元软件,给出直接法和完全法两种临界转速求解方法,并结合算例详细论述了方法的理论基础和求解过程,最终以谐响应分析结果加以验证。研究结果表明:基于商业有限元软件特征值分析的完全法不需要任何振型信息,就可对正反进动曲线进行区分,极大简化了对转双转子系统临界转速的求解过程,而由有限元软件生成矩阵后进行处理并计算的直接法不需迭代,可由一次特征值求解得到全部临界转速。某双转子系统临界转速的计算结果表明,直接法、完全法和谐响应分析的结果完全一致。双转子对转时,正进动临界转速曲线随非激励源转子的转速绝对值增加而降低,使临界转速分布规律区别于同转转子,其动力特性需予以细致考虑。  相似文献   

18.
王本华  张戈 《推进技术》1994,15(3):21-27
将大变形增量问题的Total Lagrangian法应用于粘弹性结构的动力响应分析,利用Prong级数导的Kirchhoff应力和Green应变表示的粘弹性积分型增量本构方程及其递推公式,从而给出一种计算三维粘弹性大变形动力响应的有限元增量迭加方法,经算例验证,所述方法及其相应程序具有机器内存少、计算量小和效率高的优点。  相似文献   

19.
冯锺越 《航空学报》1980,1(1):16-26
用于静力分析的航空结构分析系统是航空工业首次研制的一个大型程序系统。这一系统采用多级子结构分析技术,可以适应各种类型航空结构的线性静力分析。解题的规模最大为99个子结构,每个子结构的节点自由度为3000。系统配置有数据自动生成语句和结构分析专用语句,有较强的原始数据生成能力和用户组织自己的运算流程的灵活性。系统提供了自动分块加有效列及超元矩阵两种大型稀疏矩阵的解法,可由用户根据结构特点和计算机容量选用。在程序组织上采用两级管理的模块式结构,便于修改和逐步扩充系统的功能。整个系统约有30000条源语句,绝大部分用FORTRAN-Ⅳ写成,易于转机。在本文最后,举了某飞机用本系统进行应力分析的用户说明书形式做为例子,表明应用本系统是十分方便的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号