首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this work we present height-time diagrams of 2 halo coronal mass ejections, observed on September 28th, 1997 and June 29th, 1999. The CMEs were observed by the Large Angle and Spectroscopic Coronagraph (LASCO), which observes the solar corona from 2 to 32 solar radii. To obtain these diagrams we divide the LASCO images of a given sequence in angular slices, transform them into rectangular slices (their width chosen proportional to the time distance to the next image) and place them side by side. Thus, the speed profile of any pattern moving in the particular latitudinal slice can be derived. With this method we were able to identify even minor speed changes in several angular positions for the chosen events. This technique is particularly appropriate to identify acceleration or deceleration of structures in halo CMEs.  相似文献   

2.
The study concerns the streamer belt observed at high spectral resolution during the minimum of solar cycle 23 with the Ultraviolet Coronagraph Spectrometer (UVCS) onboard SOHO. On the basis of a spectroscopic analysis of the O VI doublet, the solar wind plasma parameters are inferred in the extended corona. The analysis accounts for the coronal magnetic topology, extrapolated through a 3D magneto-hydrodynamic model, in order to define the streamer boundary and to analyse the edges of coronal holes. The results of the analysis allow an accurate identification of the source regions of the slow coronal wind that are confirmed to be along the streamer boundary in the open magnetic field region.  相似文献   

3.
We have studied the solar magnetic cycle in corona using X-ray data from YOHKOH and Extreme Ultraviolet data from SOHO/EIT. Soft X-ray data last the period from after the maximum cycle 22 to the maximum cycle 23 (1991–2001). The SOHO/EIT Extreme Ultraviolet data are used for the period from 1996 to 2003. These data provide us a unique opportunity to look at the solar corona on the solar disc and to compare with the magnetic activity, directly.Our studies reveal a close relationship between the coronal emissions and the photospheric magnetic field in the axisymmetrical case. The evolution of coronal structures in X-ray and EUV can be considered as a proxy of the coronal magnetic field and demonstrates a development of the solar magnetic cycle in corona. It is shown that the most important feature of the coronal cycle is the forming of giant loops structure visible in X-ray and, partially, in EUV (284A) on the solar disk.  相似文献   

4.
The Ultraviolet Coronagraph Spectrometer on the Solar and Heliospheric Observatory, UVCS/SOHO, and the Ultraviolet Coronal Spectrometer on the Spartan 201 satellite, UVCS/Spartan, have been used to measure H I 1215.67 Å line profiles in polar coronal holes of the Sun at projected heliocentric heights between 1.5 and 3.0 R. UVCS/SOHO also measured line profiles for H I 1025.72 Å, O VI 1032/1037 Å, and Mg X 625 Å. The reported UVCS/SOHO observations were made between 5 April and 21 June 1996 and the UVCS/Spartan observations were made between 11 and 12 April 1993. Both sets of measurements indicate that a significant fraction of the protons along the line of sight in coronal holes have velocities larger than those for a Maxwellian velocity distribution at the expected electron temperature. Most probable speeds for O5+ velocity distributions along the lines of sight are smaller than those of H0 at 1.5 R, are comparable at about 1.7 R and become significantly larger than the H0 velocities above 2 R. There is a tendency for the O5+ line of sight velocity distribution in concentrations of polar plumes to be more narrow than those in regions away from such concentrations. UVCS/SOHO has identified 31 spectral lines in the extended solar corona.  相似文献   

5.
We present here the first results obtained by the Ultraviolet Coronagraph Spectrometer (UVCS) operating on board the SOHO satellite. The UVCS started to observe the extended corona at the end of January 1996; it routinely obtains coronal spectra in the 1145 Å – 1287 Å, 984 Å – 1080 Å ranges, and intensity data in the visible continuum. Through the composition of slit images it also produces monocromatic images of the extended corona. The performance of the instrument is excellent and the data obtained up to now are of great interest. We briefly describe preliminary results concerning polar coronal holes, streamers and a coronal mass ejection, in particular: the very large r.m.s. velocities of ions in polar holes (hundreds km/sec for OVI and MgX); the puzzling difference between the HI Ly- image and that in the OVI resonance doublet, for most streamers; the different signatures of the core and external layers of the streamers in the width of the ion lines and in the OVI doublet ratio, indicating larger line-of-sight (l.o.s.) and outflow velocities in the latter.  相似文献   

6.
The two XUV–EUV spectrometers on SOHO have collected a large amount of data in the 6000–106 K solar plasma temperature range. These data have allowed us to greatly enhance our knowledge of the processes acting in the solar atmosphere, from the chromosphere to the corona. Some results on the quiet Sun structure (network, quiet Sun versus coronal hole), on the dynamics (velocities, waves, transient events), and the main characteristics of the quiet Sun atmosphere are presented and discussed.  相似文献   

7.
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit.  相似文献   

8.
We study the 3-D kinematics of a Coronal Mass Ejection (CME) using data acquired by the LASCO C2 and UVCS instruments on board SOHO, and the COR1 coronagraphs and EUVI telescopes on board STEREO. The event, which occurred on May 20, 2007, was a partial-halo CME associated with a prominence eruption. This is the first CME studied with UVCS data that occurred in the STEREO era. The longitudinal angle between the STEREO spacecrafts was ∼7.7° at that time, and this allowed us to reconstruct via triangulation technique the 3-D trajectory of the erupting prominence observed by STEREO/EUVI. Information on the 3-D expansion of the CME provided by STEREO/COR1 data have been combined with spectroscopic observations by SOHO/UVCS. First results presented here show that line-of-sight velocities derived from spectroscopic data are not fully in agreement with those previously derived via triangulation technique, thus pointing out possible limitations of this technique.  相似文献   

9.
Statistical relationship between major flares and the associated CMEs during rising phases of Solar Cycles 23 and 24 are studied. Totally more than 6000 and 10,000 CMEs were observed by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) during 23rd [May 1996–June 2002] and 24th [December 2008–December 2014] solar cycles, respectively. In particular, we studied the relationship between properties of flares and CMEs using the limb events (longitude 70–85°) to avoid projection effects of CMEs and partial occultation of flares that occurred near 90°. After selecting a sample of limb flares, we used certain spatial and temporal constraints to find the flare-CME pairs. Using these constraints, we compiled 129 events in Solar Cycle 23 and 92 events in Solar Cycle 24. We compared the flare-CME relationship in the two solar cycles and no significant differences are found between the two cycles. We only found out that the CME mean width was slightly larger and the CME mean acceleration was slightly higher in cycle 24, and that there was somewhat a better relation between flare flux and CME deceleration in cycle 24 than in cycle 23.  相似文献   

10.
The Space Weather Explorer – KuaFu mission will provide simultaneous, long-term, and synoptic observations of the complete chain of disturbances from the solar atmosphere to the geospace. KuaFu-A (located at the L1 liberation point) includes Coronal Dynamics Imagers composed of a Lyman-α coronagraph (from 1.15 to 2.7 solar radii) and a white light coronagraph (out to 15 solar radii), in order to identify the initial sources of Coronal Mass Ejections (CMEs) and their acceleration profiles. The difficulty of observing the lower corona should not be underestimated since instrumental stray light remains a critical issue in the visible because of the low contrast of the corona with respect to the Sun. Observing the corona in the Lyman-α line is a valid alternative to white light observations. This approach takes advantage of both the intrinsic higher contrast of the corona with respect to the solar disk in this line compared to the visible, and the absence of F-corona at 121.6 nm. Furthermore, it has been convincingly shown that the coronal structures seen in Lyman-α correspond to those seen in the visible and which result from Thomson scattering of the coronal ionized gas. This is because the plasma is still collisional in the lower corona so that the hydrogen neutral atoms are coupled to the protons. A classical, all-reflecting internally-occulted Lyot coronagraph is required so as to preserve the image quality down to the inner limit of the field-of-view. A narrow band interference filter located in a collimated beam allows isolating the Lyman-α line. The visible coronagraph will adopt the approach of a single instrument having a large field-of-view extending from 2.5 to 15 solar radii. Such a design is based on refractive externally-occulted coronagraphs built for recent past missions, essentially the LASCO-C2 and C3 instruments and the SECCHI/COR 2 of the STEREO mission, which is itself a combination of the C2 and C3 instruments.  相似文献   

11.
综合运用SOHO/LASCO、SOHO/EIT关于CME的观测结果和WIND飞船关于太阳风的观测记录,识别了1998年4月下旬至5月上旬发生的磁暴的CME源,分析了与5月初强磁暴群相联系的日地事件。结果表明,所用日地扰动事件关系认证的方法是可行的,本文就上述日地事件所涉及的磁暴群与活动区的关系、CME地磁效应的日面东西不对称性以及磁云与高速流的作用等问题进行了讨论。  相似文献   

12.
Complex magnetic and plasma structures observed in the coronal streamer belt (Crooker et al., 1993; Woo 1994) might arise from the instabilities and evolution of multiple current sheets formed by adjoining coronal helmet streamers. Previously we examined the static triple current sheet (TCS), and found that three linearly unstable modes exist, two of which are potentially observable by the LASCO instrument onboard SOHO (Dahlburg and Karpen 1995). Here we investigate the variations created in this model by the inclusion of wake flows, which have been observed in coronal streamers (see Figure 1). Our principal finding is that the structure of the modes is changed significantly by the Alfvénic and sub-Alfvénic wake flow, while their growth rates are not.  相似文献   

13.
We investigate on the relationship between flares and coronal mass ejections (CMEs) in which a flare started before and after the CME events which differ in their physical properties, indicating potentially different initiation mechanisms. The physical properties of two types flare-correlated CME remain an interesting and important question in space weather. We study the relationship between flares and CMEs using a different approach requiring both temporal and spatial constraints during the period from December 1, 2008 to April 30, 2017 in which the CMEs data were acquired by SOHO/LASCO (Solar and Heliospheric Observatory/Large Angle Spectrometric Coronagraph) over the solar cycle 24. The soft X-ray flare flux data, such as flare class, location, onset time and integrated flux, are collected from Geostationary Environmental satellite (GOES) and XRT Flare catalogs. We selected 307 CMEs-flares pairs applying simultaneously temporal and spatial constraints in all events for the distinguish between two associated CME-flare types. We study the correlated properties of coincident flares and CMEs during this period, specifically separating the sample into two types: flares that precede a CME and flares that follow a CME. We found an opposite correlation relationship between the acceleration and velocity of CMEs in the After- and Before-CMEs events. We found a log-log relation between the width and mass of CMEs in the two associated types. The CMEs and flares properties show that there were significant differences in all physical parameters such as (mass, angular width, kinetic energy, speed and acceleration) between two flare-associated CME types.  相似文献   

14.
On October 28, 2003 an Earthward-directed coronal mass ejection (CME) was observed from SOHO/LASCO imagery in conjunction with an X17 solar flare. The CME, traveling at nearly 2000 km/s, impacted the Earth on October 29, 2003 causing ground-based particle detectors to register a counting rate drop known as a Forbush decrease. The CME was not only responsible for affecting the rate of cosmic rays, but also caused anisotropies in their direction of incidence. Data from Project GRAND, an array of proportional wire chambers which detects secondary muons, are presented during the time of this Forbush decrease.  相似文献   

15.
The Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI) on the NASA Solar Terrestrial Relations Observatory (STEREO) mission is a suite of remote sensing instruments consisting of an extreme ultraviolet imager, two white light coronagraphs, and a heliospheric imager. Two spacecraft with identical instrumentation will obtain simultaneous observations from viewpoints of increasing separation in the ecliptic plane. In support of the STEREO mission objectives, SECCHI will observe coronal mass ejections from their birth at the Sun, through the outer corona, to their impact at Earth. The SECCHI program includes a coordinated effort to develope magneto-hydrodynamic models and visualization tools to interpret the images that will be obtained from the two spacecraft viewpoints. The resulting three-dimensional analysis of CMEs will help to resolve some of the fundamental outstanding questions in solar physics.  相似文献   

16.
The main properties of 11622 coronal mass ejections (CMEs) observed by the Solar and Heliospheric Observatory (SOHO) mission’s Large Angle and Spectrometric Coronagraph (LASCO-C2) from January 1996 through December 2006 are considered. Moreover, the extended database of solar proton enhancements (SPEs) with proton flux >0.1 pfu at energy >10 MeV measured at the Earth’s orbit is also studied. A comparison of these databases gives new results concerning the sources and acceleration mechanisms of solar energetic particles. Specifically, coronal mass ejections with width >180° (wide) and linear speed >800 km/s (fast) seem they have the best correlation with solar proton enhancements. The study of some specific solar parameters, such as soft X-ray flares, sunspot numbers, solar flare index etc. has showed that the soft X-ray flares with importance >M5 may provide a reasonable proxy index for the SPE production rate. From this work, it is outlined that the good relation of the fast and wide coronal mass ejections to proton enhancements seems to lead to a similar conclusion. In spite of the fact that in the case of CMEs the statistics cover only the last solar cycle, while the measurements of SXR flares are extended over three solar cycles, it is obvious for the studied period that the coronal mass ejections can also provide a good index for the solar proton production.  相似文献   

17.
A statistical study of acceleration and its error of coronal mass ejections (CMEs) observed by the Large Angle Spectrometric Coronagraph (LASCO) is performed. A total of 5594 CMEs events have been analyzed by using a least-square method and using the error in the height measures. We verify that slower CMEs (velocities in the interval from 200 to 500 km s−1) tend to have a positive acceleration (about 1 m s−2) at heights above 5 solar radii, while less than 10% CMEs show an average negative acceleration (about −2.2 m s−2) as they propagate from 5 to 30 solar radii. For most individual CMEs one can not say if they are accelerated or decelerated, only for 8% of all observed CMEs events one can extract the sign of the acceleration in the 5–30 solar radii.  相似文献   

18.
Using the proton intensity and X-ray flux data from the GOES, combined with the observations of the associated solar eruptions by the Large Angle and Spectrometric Coronagraph Experiment (LASCO) on board the Solar and Heliospheric Observatory (SOHO), 14 large SEP events occurring in the period 2000 January–2002 April have been studied. It is found that: (1) events with the SEPs increasing shortly after the maximum of their parent flares (<1 h; hereafter prompt events) have rapid and great (up to four orders of magnitude) SEP increments in high-energy channels (> ∼100 MeV); however, for events whose onset of the SEP injection lags the flare maximum for a long time (>3 h; hereafter delayed events), the high-energy SEPs show no obvious enhancements (within one order of magnitude); (2) peak intensity of the prompt events is distinctly larger than that of the delayed events; (3) CMEs associated with the poorly magnetically connected events (source region <W30°) in our survey are all halo CMEs. From these observational differences, we propose a special scenario of the production of the largest SEP events: both CMEs and flares are induced in the same coronal process; high-energy particles accelerated in the reconnection region can escape easily from the open field lines and/or be transported by fast CMEs into interplanetary space, indicating a direct impulsive component in large gradual SEP events. Meanwhile, the broad width of the associated CMEs implies that the CME width is more important in SEP events production than previously considered.  相似文献   

19.
The white light coronagraphs onboard SOHO (LASCO-C2 and -C3) and most recently STEREO (SECCHI -COR1 and -COR2) have detected a myriad of coronal mass ejections (CME). They are a key component of space weather and under certain conditions they can become geo-effective, hence the importance of their kinematic characterization to help predict their effects. However, there is still a lot of debate on how to define the event boundaries for space weather purposes, which in turn makes it difficult to agree on their kinematic properties. That lack of agreement is reflected in both the manual and automated CME catalogs in existence. To contribute to a more objective definition and characterization of white-light coronagraph events, Goussies et al. (2010) introduced recently the concept of “texture of the event”. Based on that property, they developed a supervised segmentation algorithm to allow the automatic tracking of dynamic events observed in the coronagraphs field of view, which is called CORonal SEgmentation Technique (CORSET). In this work, we have enhanced the capabilities of the algorithm by adding several new functionalities, namely the automatic computation of different morphological and kinematic parameters. We tested its performance on 57 well-studied limb CME events observed with the LASCO coronagraphs between 1997 and 2001, and compared the parameters obtained with those from three existent CME lists: two of them obtained from an observer-based detection and tracking method (i.e., two manual catalogs), and the other one based on the automated detection and characterization of the CME events (i.e., a fully automated catalog). We found that 51 events could be tracked and quantified in agreement with the CME definition. In general terms, the position angle, and the radial and expansion speeds are in agreement with the manual catalogs used for comparison. On the other hand, some discrepancies between CORSET and the automated catalog were found, which can be explained by the different delimitation of the CME angular extent.  相似文献   

20.
The relation between coronal mass ejections (CMEs) and solar flares are statistically studied. More than 10,000 CME events observed by SOHO/LASCO during the period 1996–2005 have been analyzed. The soft X-ray flux measurements provided by the Geostationary Operational Environmental Satellite (GOES), recorded more than 20,000 flares in the same time period. The data is filtered under certain temporal and spatial conditions to select the CME–flare associated events. The results show that CME–flare associated events are triggered with a lift-off time within the range 0.4–1.0 h. We list a set of 41 CME–flare associated events satisfying the temporal and spatial conditions. The listed events show a good correlation between the CME energy and the X-ray flux of the CME–flare associated events with correlation coefficient of 0.76.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号