首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The MAX family of constant-false-alarm-rate (CFAR) detectors is introduced as a generalization of the greatest of CFAR (GO-CFAR) or MX mean-level detector (MX-MLD). Members of the MAX family use local estimators based on order statistics and generate both a near-range and a far-range noise-level estimate. Local estimates are always combined through a maximum operation; this insures false-alarm control at clutter edges. At the same time, order-statistic-based estimators result in a high-resolution detector. A complete detection analysis is provided for SWII targets and a reference channel contaminated by large outliers. Results are presented for the MX censored MLD (MX-CMLD) operating in clutter. The MX order statistic detector (MX-OSD) based on only a single-order statistic per window, is analyzed, and curves showing the required threshold, CFAR loss, optimum censoring point, and signal-to-noise ratio (SNR) loss in the presence of outliers are given. Simulations are used to compare the dynamic responses of various MX-OSD detectors in a clutter and a multiple-target environment  相似文献   

2.
It is necessary for automatic detection radars to be adaptive to variations in background clutter in order to maintain a constant false alarm rate (CFAR). A CFAR based on an ordered statistic technique (OS CFAR) has some advantages over the cell-averaging technique (CA CFAR), especially in clutter edges or multiple target environments; unfortunately the large processing time required by this technique limits its use. The authors present two new OS CFARs that require only ahlf the processing time. One is an ordered statistic greatest of CFAR (OSGO), while the other is an ordered statistic smallest of CFAR (OSSO). The OSGO CFAR has the advantages of the OS CFAR with only a negligible increment to the CFAR loss  相似文献   

3.
OS-CFAR theory for multiple targets and nonuniform clutter   总被引:1,自引:0,他引:1  
The performance of a cell averaging constant false-alarm rate (CA-CFAR) detector degrades rapidly in nonideal conditions caused by multiple targets and nonuniform clutter. The ordered-statistic CFAR (OS-CFAR) is an alternative to the CA-CFAR. The OS-CFAR trades a small loss in detection performance relative to the CA-CFAR in ideal conditions for much less performance degradation in nonideal conditions. A formula is given for the detection probability of the OS-CFAR when there are multiple Swerling I targets in the CFAR window, and a formula is given for the probability of false alarm in nonuniform Raleigh clutter  相似文献   

4.
In this paper, we investigate data quantization effects in constant false alarm rate (CFAR) signal detection. Exponential distribution for the input data and uniform quantization are assumed for the CFAR detector analysis. Such assumptions are valid in the case of radar for a Swerling I target in Gaussian clutter plus noise and a receiver with analog square-law detection followed by analog-to-digital (A/D) conversion. False alarm and detection probabilities of the cell averaging (CA) and order statistic (OS) CFAR detectors operating on quantized observations are analytically determined. In homogeneous backgrounds with 15 dB clutter power fluctuations, we show analytically that a 12-bit uniform quantizer is sufficient to achieve false alarm rate invariance. Detector performance characteristics in nonhomogeneous backgrounds, due to regions of clutter power transitions and multiple interfering targets, are also presented and detailed comparisons are given  相似文献   

5.
非相干Rice杂波中的恒虚警检测   总被引:1,自引:0,他引:1  
 地杂波的统计特性常常可以用Rice模型来描述,其物理基础是认为地杂波由一些大的固定散射体引起的稳定分量和大量小的随机分布的运动散射体引起的瑞利起伏分量所合成。文献[2]研究了稳定分量不相干时Rice杂波中离散时间最佳检测的估值器——相关器结构,但无显式解,实现有困难。文献[3]导出了Rice杂波中SwerlingⅡ目标的离散时间检测的似然比检测器结构。在此基础上,本文给出了一种修正平方律结构的似然比检测器,并和通常的平方律检测器作了性能比较。  相似文献   

6.
Littoral operation of radars poses severe signal processing difficulties due to the highly stressing, inhomogeneous clutter. This report describes an initial investigation into the feasibility of utilising site specific radar modelling to provide a localized estimate of the clutter statistics which can then be used to predict the required threshold to maintain a given false alarm rate. The technique has been applied to littoral clutter recordings obtained from the experimental S-band phase array radar, MESAR2. Results are presented for the technique in comparison with a conventional, non-adaptive, cell averaging CFAR. The paper concludes that significant performance enhancements are possible through the use of this new technique.  相似文献   

7.
Littoral operation of radars poses severe signal processing difficulties due to the highly stressing, inhomogeneous clutter. This report describes an initial investigation into the feasibility of utilising site-specific radar modelling to provide a localised estimate of the clutter statistics which can then be used to predict the required threshold to maintain a given false alarm rate. The technique has been applied to littoral clutter recordings obtained from the experimental S-band phased array radar, MESAR2. Results are presented for the technique in comparison with a conventional, non-adaptive, cell averaging CFAR. This paper concludes that significant performance enhancements are possible through the use of this new technique.  相似文献   

8.
The greatest-of-order statistics estimator (GOOSE) constant false alarm rate (CFAR) and the censored greatest-of (CGO) CFAR are described. Both are designed to accommodate interfering targets in the reference window as well as control false alarms in the presence of clutter boundaries. Both succeed in accomplishing these tasks although the CGO-CFAR is preferred as it has a designed graceful degradation as the number of interfering targets exceeds the number of samples censored. The advantage of the GOOSE-CFAR is a theoretical one in that one can derive analytical results for clutter boundary analysis and thus not have to resort to simulations  相似文献   

9.
A constant false alarm rate (CFAR) detection method which is based on a combination of median and morphological filters (MEMO) is proposed. The MEMO algorithm has robust performance with small CFAR loss, very good behavior at clutter edges and high detection performance in the case of closely spaced narrowband signals (targets). The proposed MEMO method is favourably compared with cell averaging (CA) and ordered statistics (OS) CFAR detectors. The Monte Carlo method is employed to analyze the MEMO-CFAR detector  相似文献   

10.
The cell averaging LOG/CFAR receiver is a special implementation of a constant-false-alarm-rate (CFAR) receiver in which the noise level estimate is derived from a set of contiguous time samples of the output of a logarithmic (LOG) detector as obtained from a tapped delay line. This CFAR receiver is capable of operating over a larger dynamic range of noise levels than a conventional cell averaging CFAR receiver, but with somewhat poorer detectability. The performance in stationary Gaussian noise of the cell averaging LOG/CFAR receiver with no post-detection integration is determined in this paper. For a small number of reference noise samples, results were obtained by a Monte Carlo simulation using the technique of importance sampling. For a large number of reference noise samples, a second moment analysis gave the desired results. Both these results can be summarized in the following simple formula, NLOG = 1.65NLIN - 0.65, which relates the number of reference samples required by each of the two receivers for equivalent performance. Thus, for the cell averaging LOG/CFAR receiver to give the same detection performance as the conventional cell averaging CFAR receiver, the number of reference noise samples has to be increased by up to 65 percent.  相似文献   

11.
A new family of constant false alarm rate (CFAR) processors is introduced. An Ll-CFAR forms its noise power estimate by linearly filtering ranked samples from the reference set; the weights of this combination, however, depend not only on the rank, but also on the relative proximity of the sample to the cell under test. From the class of Ll-CFARs may be chosen members which effectively censor spurious targets; members which exhibit impressive control of false alarm in the presence of a clutter edge; and members which are robust against both such inhomogeneities. While the design of such schemes is involved, their implementation is not significantly more burdensome than that of plain ordered statistic CFAR (OS-CFAR). After a discussion of the stochastic training of Ll-CFAR, the performance is thoroughly assessed under the most commonly encountered instances of environmental conditions, and compared with those of classical CFAR techniques  相似文献   

12.
Linearly combined order statistic (LCOS) constant false-alarm rate (CFAR) detectors are examined for efficient and robust threshold estimation applied to exponentially distributed background observations for improved detection. Two optimization philosophies have been employed to determine the weighting coefficients of the order statistics. The first method optimizes the coefficients to obtain efficient estimates of clutter referred to the censored maximum likelihood (CML) and best linear unbiased (BLU) CFAR detectors. The second optimization involves maximizing the probability of detection under Swerling II targets and is referred to as the most powerful linear (MPL) CFAR detector. The BLU-CFAR detector assumes no knowledge of the target distribution in contrast to the MPL-CFAR detector which requires partial knowledge of the target distribution. The design of these CFAR detectors and the probability of detection performance are mathematically analyzed for background observations having homogeneous and heterogeneous distributions wherein the trade-offs between robustness and detection performance are illustrated  相似文献   

13.
简涛  何友  苏峰  曲长文  顾新锋 《航空学报》2010,31(3):579-586
在球不变随机向量(SIRV)非高斯杂波背景下,研究了多脉冲相参雷达目标的自适应检测问题。假设杂波具有相同的协方差矩阵结构和可能相关的纹理分量,提出了新的协方差矩阵估计器,并获得了相应的自适应归一化匹配滤波器(ANMF)。理论分析表明,在估计杂波分组大小与实际情况匹配时,所获得的ANMF对杂波功率水平和协方差矩阵结构均具有恒虚警率(CFAR)特性。仿真结果表明:当估计的杂波分组大小失配时,所获得的ANMF具有近似CFAR特性,并进一步分析了不同参数变化对所提检测器性能的影响。与已有的ANMF相比,所获得的ANMF具有更好的检测性能,且迭代次数更小,其相对于已知杂波协方差矩阵的最优归一化匹配滤波器(NMF)的检测损失也更小,具有很好的实际应用前景。  相似文献   

14.
Optimal CFAR detection in Weibull clutter   总被引:2,自引:0,他引:2  
Optimal, in the maximum likelihood sense, constant false-alarm rate (CFAR) detection for Weibull clutter statistics, is investigated. The proposed OW (optimal Weibull) estimator is proved to be an asymptotically efficient estimator of the mean power of the Weibull clutter. Theoretical analysis of the OW-CFAR detector is provided, while detection performance analysis is carried out using the Monte Carlo simulation method. The operation of the median and morphological (MEMO)-CFAR detector in Weibull clutter statistics is also explained. It performs almost optimally in uniform clutter and, simultaneously, it is robust in multitarget situations. The performance of the proposed OW-CFAR detector in uniformal Weibull clutter is used as a yardstick in the analysis of the MEMO cell-averager (CA) and ordered statistic (OS) CFAR detectors. Nonfluctuating and fluctuating (Swerling II) targets are considered in detection analysis. The performance of the detectors is also examined at clutter edges  相似文献   

15.
Biparametric linear estimation for CFAR against Weibull clutter   总被引:1,自引:0,他引:1  
The authors deal with constant false alarm rate (CFAR) procedures against nonstationary clutter, modeled as a Weibull distributed process whose scale parameter α and shape parameter β are both variable. It is shown that conventional CFAR procedures, which compensate only for α, degrade intolerably as β deviates from β=2, namely, as the Rayleigh distributional assumption is violated. A biparametric CFAR procedure is shown to be suited to such situations. The authors introduce a logarithmic transformation to reduce the Weibull probability density function (pdf) to a Gumbel pdf, i.e., to the location-scale type, and then exploit the best linear unbiased estimation (BLUE) of location-scale parameters to adjust the detection threshold. True CFAR is thus achieved when the clutter is locally homogeneous. Resilience against local inhomogeneities can also be conferred since BLUE lends itself to censoring. Through a performance analysis, the influence of various system and distributional parameters is elicited  相似文献   

16.
This paper provides general models of radar echoes from a target. The rationale of the approach is to consider the echoes as the output of a linear dynamic system driven by white Gaussian noise (WGN). Two models can be conceived to generate N target returns: samples generated as a batch, or sequentially generated one by one. The models allow the accommodation of any correlation between pulses and nonstationary behavior of the target. The problem of deriving the optimum receiver structure is next considered. The theory of "estimator-correlator" receiver is applied to the case of a Gaussian-distributed time-correlated target embedded in clutter and thermal noise. Two equivalent detection schemes are obtained (i. e., the batch detector and the recursive detector) which are related to the above mentioned procedures of generating radar echoes. A combined analytic-numeric method has been conceived to obtain a set of original detection curves related to operational cases of interest. Finally, an adaptive implementation of the proposed processor is suggested, especially with reference to the problem of on-line estimation of the clutter covariance matrix and of the CFAR threshold. In both cases detection loss due to adaptation has been evaluated by means of a Monte Carlo simulation approach. In summary, the original contributions of the paper lie in the mathematical formulation of a powerful model for radar echoes and in the derivation of a large set of detection curves.  相似文献   

17.
Coherent signal detection in non-Gaussian interference is presently of interest in adaptive array applications. Conventional array detection algorithms inherently model the interference with a multivariate Gaussian random vector. However, non-Gaussian interference models are also under investigation for applications where the Gaussian assumption may not be appropriate. We analyze the performance of an adaptive array receiver for signal detection in interference modeled with a non-Gaussian distribution referred to as a spherically invariant random vector (SIRV). We first motivate this interference model with results from radar clutter measurements collected in the Mountain Top Program. Then we develop analytical expressions for the probability of false alarm and the probability of detection for the adaptive array receiver. Our analysis shows that the receiver has constant false alarm rate (CFAR) performance with respect to all the interference parameters. Some illustrative examples are included that compare the detection performance of this CFAR receiver with a receiver that has prior knowledge of the interference parameters  相似文献   

18.
Radar detection in clutter   总被引:2,自引:0,他引:2  
Clutter is defined as any unwanted radar return. The presence of clutter in a range/Doppler cell complicates the detection of a target return signal in that cell. In order to quantify the effect of clutter on the probability of detection, we must first specify sets of models suitable for representing the clutter and target. The simplest and most common model for clutter is based on the gamma density. We include two additional models, the NCG and NCGG clutter models for low grazing angles. They are motivated by physical arguments, the latter of which can accommodate the well-known phenomenon of speckle. Using one of these models for clutter together with one of several models for targets, we determine, in a range/Doppler cell, expressions for probabilities of detection of a target in the presence of clutter. It is important to control the probability of false alarms. The presence of clutter in a cell necessitates an increase in the detection threshold setting in order to control false alarms, thus lowering the probability of detection. If the clutter level is unknown, then we need to take measurements of the clutter and use it to adjust the threshold. The more clutter samples we take, the better the estimate of the clutter level and the less is the resulting detection loss. Using the expressions for the probability of detection in clutter, we can quantify the detection loss for a pair of commonly used constant false-alarm rate (CFAR) techniques and investigate how the loss varies with different parameter values, especially with regard to the number of clutter samples taken to estimate the clutter level.  相似文献   

19.
It is shown that in a situation where a radar target is distant enough from the radar and is included in a natural or artificial clutter environment in such a manner that the conventional detection methods fail, it is possible to improve the radar detection performance by using appropriate signal processing on two orthogonal polarization states. A CFAR (constant false alarm rate) polarimetric detection system based on the study of the polarization difference between clutter and target is proposed. Since the polarization state of the clutter echoes fluctuates slowly from cell to cell, an autoregressive model can be applied to the components of the polarization vector to predict the detection thresholds needed to follow the polarization state variation. The detection thresholds are determined to maintain a false alarm probability equal to 10-6. The presence of a target registers as a significant variation of the estimation error of the polarization vector. Results obtained from measurements of simple and canonical targets with artificial clutter are presented, and these results validate the principle of polarimetric detection  相似文献   

20.
The derivation of a completely adaptive polarimetric coherent scheme to detect a radar target against a Gaussian background is presented. A previously proposed Generalized Likelihood Ratio Test (GLRT) polarimetric detector is extended to the case of a general number of channels; this exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. Together with the fully adaptive scheme, a model-based detector is derived that has a lower estimation loss. A complete theoretical expression is derived for the detection performance of both proposed polarimetric detectors. They are shown to have Constant False Alarm Rate (CFAR) when operating against Gaussian clutter, but to be sensitive to deviations from the Gaussian statistic. The application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号