首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
自由活塞激波风洞产生的入射激波在行进过程中存在较大衰减,这种现象不仅降低了风洞喷管贮室的焓值、压力的量值和平稳性,而且也制约了风洞有效试验时间。针对自由活塞激波风洞结构特点,试图揭示入射激波衰减的主导原因。在忽略一些偶然性随机性因素后,重点对黏性衰减和反射膨胀波作用两个因素的影响进行了分析和比较。结果表明,在风洞主膜片打开时刻,活塞前脸与主膜片之间的短促距离,加剧了反射膨胀波的影响,在很多情况下,这是导致激波衰减的更为主要的因素。出于降低激波衰减和延长风洞有效试验时间的实际工程需要,提出了变截面活塞压缩器的设计构型。随后的理论研究显示,该构型能够实现活塞充分减速并达到安全速度,被压缩气体(驱动气体)能够形成平稳的压力/温度平台,满足激波管驱动需要。  相似文献   

2.
高焓激波风洞的驱动技术决定了风洞总焓和总压试验能力。重活塞压缩加热技术具有驱动性能强和运行灵活性高等特点,是高焓激波风洞关键驱动技术。针对重活塞发射效能、重活塞与壁面摩擦、膜片破膜等情况带来的大尺寸重活塞难以安全软着陆问题,通过理论分析、动网格数值模拟和试验验证相互结合的手段,分析了重活塞实际运动过程的影响因素,建立了重活塞调谐运行方法,获得了稳定的驱动压力,可为不同的模拟需求提供对应的试验状态。研究了质量为205 kg、275 kg的重活塞在压缩管中运行最高速度分别超过350 m/s、450 m/s的软着陆过程,获得了压缩管末端总压15 MPa、总温3 450 K和总压45 MPa、总温4 845 K的定压试验状态。本研究解决了大尺寸自由活塞激波风洞重活塞软着陆难题,保障了世界最大尺寸自由活塞驱动的FD-21高焓激波风洞中、质量为数百千克的重活塞、在长度为75 m的压缩管中的运行安全。  相似文献   

3.
爆轰驱动膨胀管性能研究   总被引:2,自引:1,他引:1  
周凯  汪球  胡宗民  姜宗林 《航空学报》2016,37(3):810-816
超高速流动一般指速度超过5 km/s的流动,由于流动具有高焓高速的特点,模拟超高速流动的地面试验设备面临极大挑战。膨胀管(风洞)是少数几种具备超高速流动模拟能力的地面试验设备之一。中国科学院力学研究所高温气体动力学国家重点实验室(LHD)通过将正向爆轰驱动技术和膨胀管结合在一起,建成了可实现最高速度10 km/s超高速试验气流的爆轰驱动膨胀管(JF-16),并开展了典型模型试验。在此基础上对JF-16进行了改造升级工作,为其设计喷管增加了膨胀风洞运行模式,对其性能进行了相关试验测试研究。同时,对膨胀管相关数值方法进行了介绍,并开展数值模拟对试验状态进行辅助诊断和分析。  相似文献   

4.
一种新运行方式脉冲燃烧风洞研制及初步应用   总被引:3,自引:0,他引:3  
介绍了一座喷管口径为600mm、利用氢与富氧空气混合燃烧产生高焓试验气流的脉冲风洞。风洞首次采用了活塞挤压为加热器供应燃料和路德维希管供应富氧空气的工作方式,实现了风洞试验过程中需多少燃料就供多少燃料,消除了采用路德维希管供燃料存在的弊端。自主研制的大通径快速阀取代了膜片,提高了设备运行效率。风洞在吸气式高超声速技术研究中得到了成功应用。  相似文献   

5.
高焓风洞及其试验技术是助力人类进入高超声速飞行时代的基石,近年来取得了长足的进展。本文首先重点介绍了四种典型驱动模式的高焓风洞,即直接加热型高超声速风洞、加热轻气体驱动激波风洞、自由活塞驱动激波风洞和爆轰驱动激波风洞。通过这些代表性风洞的介绍,讨论了相关风洞的理论基础和关键技术及其长处与不足。由于高超声速高焓流动具高温热化学反应特征,风洞试验技术研究还包含着针对高焓特色的测量技术发展。本文介绍了三种主要测量技术:气动热测量技术、气动天平技术和光学测量技术。这些技术是依据常规风洞试验测量需求而研制的,又根据高焓风洞的特点得到了进一步的改进和完善。最后对高超声速高焓风洞试验技术发展做了简单展望。  相似文献   

6.
一、引 言 为了提高管风洞、激波管的运行品质,非定常膨胀波进入圆管后壁面附面层增长问题的研究有着重要意义。尤其在跨音速管风洞,贮气管内附面层随时间的增长情况,直接影响到管风洞的运行时间及流动品质。这一问题的解决是设计管风洞的前提和基础。 贝克尔(E.Becker)首先计算了贮气管道内附面层的增长。他用二元不可压缩的假定和1/7次方速度分布,简化了附面层动量积分方程;然后用勃拉休斯(Blasius)表面摩擦规律求出了解,并得到了等效的有心膨胀波运动速度。虽然在附面层内及表面摩擦系  相似文献   

7.
高焓激波风洞爆轰驱动技术研究   总被引:2,自引:0,他引:2  
激波风洞爆轰驱动技术利用引爆可燃混合气体快速释放的化学能产生强激波,压缩激波管的试验气体,提供产生超高速流动所需的试验气源,是近十几年来发展成功的激波风洞强驱动方法.本文分布介绍了反向爆轰驱动、正向爆轰驱动和反向爆轰膨胀驱动模式,分析了应用这些驱动技术产生的高焓、高雷诺数、高超声速流动的气源特点,探讨了不同驱动模式影响激波风洞性能的关键因素.并重点介绍了反向爆轰膨胀驱动模式,分析了影响缝合条件的参数以及二次波现象.应用这些爆轰驱动技术,研制了能够产生总焓为1000K~8000K,具有较长试验时间的高品质超高速气流.为开展高超声速气动实验研究奠定了良好的基础.  相似文献   

8.
自由活塞激波风洞定压驱动时间研究   总被引:2,自引:0,他引:2  
自由活塞激波风洞是一种高焓值的高超声速地面试验设备,其运行时间十分短暂。提高自由活塞激波风洞有效试验时间的一个可行途径是延长定压驱动时间。以此为目的,本文探索了活塞压缩器中活塞速度对定压驱动时间的影响。研究结果表明,在不同的初始参数下,定压驱动时间关于活塞速度存在极大值,这些极大值形成了一条脊线(局部极值曲线)。随后,通过数值计算的结果归纳出脊线的若干性质。这些结果表明,在活塞压缩器的理论设计中,设计参数应选择在靠近这条脊线的区域,并且该处的定压驱动时间关于参数的梯度应该相对较小。  相似文献   

9.
连续式跨声速风洞设计关键技术   总被引:6,自引:0,他引:6  
为研制先进飞行器,除了提高现有风洞试验测量精度和改进试验技术外,必须建立高性能连续式跨声速风洞试验设备,解决飞行器高速风洞试验模拟能力和精细化模拟问题。以试验段尺寸0.6m×0.6m连续式跨声速风洞设计为例,给出了风洞总体设计方案,分析了如何降低风洞气流脉动、如何改善风洞流场品质、提高风洞运转效率和拓展风洞试验能力等关键技术途径。该风洞作为大型连续式跨声速风洞的引导风洞,方案设计主要采用了高压比压缩机驱动系统、半柔壁喷管、低噪声试验段、高性能换热器和三段调节片加可调中心体式二喉道等新型技术。  相似文献   

10.
高超声速风洞是研究高超声速空气动力学关键问题的重要手段,但是常规高超声速风洞建设和运行成本偏高,不利于深入开展高超声速飞行器部分空气动力学基础问题研究。本文以低成本研究型高超声速风洞设计为目标,基于Ludwieg管设计原理,开展了Φ0.5 m口径马赫数6高超声速Ludwieg管的气动设计。首先采用数值手段对储气段、快开阀以及Laval喷管设计进行了分析,重点关注了采用弯曲储气段的Ludwieg管风洞非定常启动过程,之后使用皮托耙和皮托管等对风洞实验段的自由来流进行了初步校测。结果表明,采用快开阀主控的Ludwieg管高超声速风洞可以获得良好的流动品质,弯曲储气段虽然会影响膨胀波系的传播强度,但对其传播速度以及风洞的流场品质影响不大;风洞初步校测的数据显示,该风洞的来流马赫数分布品质优良,且来流压力脉动幅值低于德国与美国同类管风洞。该研究为设计低成本、大口径、研究型高超声速风洞提供了参考,可服务于高超声速空气动力学关键气动问题的实验研究。  相似文献   

11.
本文介绍了中国科学院高温气体动力学重点实验室在超高速高焓流动模拟技术和试验方法方面取得的研究进展.文章主要包括三部分研究内容:第一部分是关于发展先进的超高速试验模拟技术,包括爆轰驱动高焓激波风洞和爆轰驱动高焓膨胀管.高焓激波风洞产生的超高速气流速度的范围是3.5km/s~6.0km/s,高焓膨胀管能够模拟速度为6.5km/s~10km/s的超高速气流.第二部分介绍高焓激波风洞喷管流场诊断结果,用来检验喷管产生的超高速流场的流场品质及其与飞行条件的差异.第三部分是关于超高速流动的试验方法和数值技术研究,包括高焓流动中真实气体效应对飞行器俯仰力矩变化的影响;热化学反应流动中表面催化效应诱导的气动热变化规律;喷管流场的气流非平衡效应对试验结果可能产生的影响.  相似文献   

12.
高焓激波风洞是研究高温真实气体效应主要的地面模拟设备,基于高焓激波风洞发展的试验技术主要包括驱动技术、流场检测技术和测试技术。决定试验段所能达到的总焓和总压水平的驱动技术,主要包括变截面驱动、多段驱动、轻质气体驱动和加热轻质气体驱动;高焓激波风洞驻室温度高,导致激波管末端和喉道等内流道产生烧蚀并对流场带来污染,并且在高温条件下气体分子发生离解甚至电离,导致试验分析困难;确定试验段自由来流参数和有效时间以及污染气体推迟的流场检测技术,是开展风洞试验的前提条件;高焓激波风洞总焓和总压高,有效试验时间毫秒量级,对测试技术提出了更高的要求。本文综述相关技术的研究进展,重点介绍了气动热/气动力以及流场物理化学参数的测试技术,指出进一步的技术发展方向,以期为大型高焓激波风洞的发展与应用提供参考。  相似文献   

13.
等熵轻质活塞风洞是一种工作时间很短的风洞,作为气源适合于瞬时热传导测量技术的研究工作。在研究了此风洞工作特性的基础上,提出了确定风洞中主要部件尺寸的方法,为风洞全面设计提供依据。压力比P0/P和trun是确定管道尺寸的主要参数,匹配压力振荡最大振幅的允许值是确定活塞质量的关键。  相似文献   

14.
在各种定制化测试设备中,由于很多仪器驱动不符合现有的标准,从而降低了测试软件的开发效率和质量。为此,提出了一种面向功能的测试设备驱动器的设计与实现方法。通过对特定类别测试设备所需实现功能的分析,获得了脱离硬件环境的功能项目集合,并建立了规范化的设备驱动接口。在驱动组件的内部,封装了对硬件仪器的控制,并描述了实际测试设备的功能实现。测试设备驱动器为上层软件提供了统一的开发和运行基础,便于测试程序针对这些虚拟化的功能接口进行开发,避免了硬件的差异性对业务逻辑的影响。应用实例表明,该方法提高了测试程序的移植性和开发质量,尤其适用于各种系列化的、含有非标准驱动程序的测试软件的开发。  相似文献   

15.
采用激波风洞-微波管组合设备对顶混的碳氢燃料-空气混合物的点火与超声速燃烧进行了研究。为缩短碳氢燃料-空气混合物的点火延迟时间,通过激波风洞喷管入口与接触面之间的激波反射对经过雾化与气化的碳氢燃料(汽油)进行预热;此外,由燃烧驱动激波管产生的高温燃气作为引导火焰点燃激波风洞产生的预混与预热的超声速碳氢燃料-空气混合物。采用纹影系统对超声速可燃气流中的火焰传播进行流场显示。实验结果表明,上述方法可将碳氢燃料-空气混合物的点火延迟时间缩短至小于0.2ms,同时还得出了火焰相对于超声速可燃气流的传播速度。  相似文献   

16.
汪球  赵伟  余西龙  姜宗林 《航空学报》2015,36(11):3534-3539
高焓激波风洞能够产生模拟高马赫数飞行条件的气流总温,是研究高温真实气体效应以及再入物理问题的有效试验装备,但是激波风洞的试验时间较短,且随着气流焓值的提高大幅降低,仅为几毫秒,因此试验测试数据曲线中有效时间段的分辨十分重要,它直接影响到试验结果的可靠性及精度。鉴于此,采用压力测量、静电探针测量、非接触光学测量和热流测量的方式,针对中国科学院力学研究所JF-10高焓激波风洞16 MJ/kg总焓、7700 K总温的流场状态,对比研究了风洞喷管的起动时间以及有效测试时间。试验结果表明:静电探针测量方法最为有效地分辨了喷管起动时间段、有效试验时间段以及驱动气体的到达; JF-10高焓风洞在16 MJ/kg的状态下,喷管起动时间约为1.3 ms,风洞有效试验时间约为2 ms。  相似文献   

17.
参考北大西洋公约组织和AIAA推荐的风洞试验数据不确定度计算方法,结合激波风洞运行特点,确定激波风洞气动力试验的主要误差源,计算激波风洞13-2标模气动力测量结果的不确定度。采用改变单一变量的方法计算主要误差源对测量结果不确定度的影响程度,辨析对不确定度起主要作用的基本参数。计算结果表明:皮托压力和总压的测量结果对流场参数影响显著,皮托压力的测量结果比总压测量结果对流场参数与气动力测量结果影响更大;降低皮托压力和总压的偏离极限,有利于提高激波风洞气动力试验数据的质量。  相似文献   

18.
结冰风洞液态水含量测量装置设计与实现   总被引:2,自引:0,他引:2  
结冰风洞与常规风洞的重要区别就是结冰风洞能够模拟真实大气结冰云雾环境,研究飞行器的结冰特性,因此结冰云雾参数的模拟是结冰风洞主要而且关键的能力。液态水含量是结冰风洞云雾参数中一项重要参数,其准确测量是结冰试验开展的基本前提。冰刀法测量液态水含量在国内外被广泛认可,且冰刀装置作为风洞校测基本手段,写入了结冰风洞校准规范。针对结冰风洞中用于液态水含量测量的冰刀装置,根据其测量原理制定了试验方案;提出了整套装置设计的技术指标并指出其中的技术难点;对总体结构进行了设计,并对关键受力部件进行了强度、刚度分析;进行了关键技术研究,包括冰刀液态水收集系数计算和驱动控制系统设计等;最后将设计出的冰刀装置在结冰风洞中进行了试验验证。试验结果表明:冰刀装置设计合理,液态水收集效果良好,实现了结冰风洞液态水含量的测量标定,且防护罩开闭迅速,实现了结冰时间的精确控制,满足技术指标要求。  相似文献   

19.
Ludwieg管风洞能低成本、高效率地产生低湍流度的高超声速气流,被广泛用于高超声速(马赫数6及以上)基础空气动力学实验研究。尽管Ludwieg管式高超声速风洞逐渐普及,但是基于Ludwieg管风洞管原理建设的超声速风洞并不多见,制约了实验人员对超声速空气动力学问题的研究。本文以拓展德国不伦瑞克工业大学马赫数6Ludwieg管风洞到马赫数3流域为例,详细介绍了串列式喷管Ludwieg式超声速风洞的设计技术。串列式喷管Ludwieg式超声速风洞在传统Ludwieg管风洞的结构基础上额外引入一个Laval喷管(第一段Laval喷管)和稳定段,并重新设计试验段对应的Laval喷管(第二段Laval喷管),最终获得超声速流动。文章首先介绍了串列式喷管Ludwieg式超声速风洞的空气动力设计原理;之后分别介绍了不同部件在这种风洞上的优化设计方法;最后,针对这种风洞的独特设计特点,对其将来的发展方向以及科研应用背景进行了展望。串列式喷管Ludwieg式超声速风洞基于常规的Ludwieg式管风洞改建而成,在继承原Ludwieg管风洞优点的同时,以极低的成本拓展了原风洞的运行速域,极其适合高校和科研机构用于开展超声速空气动力学的基础实验研究。  相似文献   

20.
为满足高超声速飞行器气动力雷诺数效应研究需求,在CARDC的Φ1米高超声速风洞中开展了变雷诺数试验技术研究.该项试验技术是利用Φ1米高超声速风洞采用高压下吹-真空抽吸驱动运行方式、风洞运行参数范围宽的特点,通过宽范围内调节风洞运行总压而大幅改变模拟雷诺数.研究采用了单点变雷诺数试验技术和连续变雷诺数试验技术两种手段来开展高超声速飞行器气动力雷诺数效应模拟.单点变雷诺数试验是通过一系列不同雷诺数条件、不同试验车次的试验结果,获得气动特性随雷诺数的变化规律;连续变雷诺数试验时,控制风洞总压从高到低连续变化,测量获取模型处于某一姿态角条件时气动力随雷诺数的变化规律.本文介绍了变雷诺数试验的风洞开车方式、试验及数据处理方法等,并开展了某升力体飞行器和某弹头模型雷诺数效应试验研究.研究结果表明:采用单点和连续变雷诺数试验技术相结合的方式,能较为完整、准确地获得飞行器模型气动力随雷诺数的变化规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号