首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The derivation of a completely adaptive polarimetric coherent scheme to detect a radar target against a Gaussian background is presented. A previously proposed Generalized Likelihood Ratio Test (GLRT) polarimetric detector is extended to the case of a general number of channels; this exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. Together with the fully adaptive scheme, a model-based detector is derived that has a lower estimation loss. A complete theoretical expression is derived for the detection performance of both proposed polarimetric detectors. They are shown to have Constant False Alarm Rate (CFAR) when operating against Gaussian clutter, but to be sensitive to deviations from the Gaussian statistic. The application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   

2.
Studies of target detection algorithms that use polarimetric radardata   总被引:2,自引:0,他引:2  
Algorithms are described which make use of polarimetric radar information in the detection and discrimination of targets in a ground clutter background. The optimal polarimetric detector (OPD) is derived. This algorithm processes the complete polarization scattering matrix (PSM) and provides the best possible detection performance from polarimetric radar data. Also derived is the best linear polarimetric detector, the polarimetric matched filter (PMF), and the structure of this detector is related to simple polarimetric target types. New polarimetric target and clutter models are described and used to predict the performance of the OPD and the PME. The performance of these algorithms is compared with that of simpler detectors that use only amplitude information to detect targets. The ability to discriminate between target types by exploring differences in polarimetric properties is discussed  相似文献   

3.
Optimal speckle reduction in polarimetric SAR imagery   总被引:9,自引:0,他引:9  
Speckle is a major cause of degradation in synthetic aperture radar (SAR) imagery. With the availability of fully polarimetric SAR data, it is possible to use the three complex elements (HH, HV, VV) of the polarimetric scattering matrix to reduce speckle. The optimal method for combining the elements of the scattering matrix to minimize image speckle is derived, and the solution is shown to be a polarimetric whitening filter (PWF). A simulation of spatially correlated, K-distributed, fully polarimetric clutter is then used to compare the PWF with other, suboptimal speckle-reduction methods. Target detection performance of the PWF, span, and single-channel |HH|2 detectors is compared with that of the optimal polarimetric detector (OPD). A novel, constant-false-alarm-rate (CFAR) detector (the adaptive PWF) is as a simple alternative to the OPD for detecting targets in clutter. This algorithm estimates the polarization covariance of the clutter, uses the covariance to construct the minimum-speckle image, and then tests for the presence of a target. An exact theoretical analysis of the adaptive PWF is presented; the algorithm is shown to have detection performance comparable with that of the OPD  相似文献   

4.
Optimal polarimetric processing for enhanced target detection   总被引:3,自引:0,他引:3  
The results of a study of several polarimetric target detection algorithms are summarized. The algorithms were tested using real target-in-clutter data collected by the Lincoln Laboratory 35 GHz synthetic aperture radar (SAR) sensor. Fully polarimetric measurements (HH, HV, VV) are processed into intensity imagery using adaptive and nonadaptive polarimetric whitening filters (PWFs). Then a two-parameter constant false alarm rate (CFAR) detector is run over the imagery to detect the targets. Nonadaptive PWF processed imagery is shown to provide better protection performance than either adaptive PWF processed imagery or single-polarimetric-channel HH imagery. In addition, nonadaptive PWF processed imagery is shown to be visually clearer than adaptive processed imagery  相似文献   

5.
A Multiband GLRT-LQ (Generalized Likelihood Ratio Test-Linear Quadratic), MBGLRT-LQ, detector is derived for the coherent radar target detection against a compound-Gaussian clutter background. This scheme is an extension to the multiband case of the Asymptotically Optimum Detector (AOD), also derived under the name of GLRT-LQ in. The proposed multiband version of the algorithm shows two main advantages with respect to the original single-band algorithm. 1) For the adaptive implementation, it requires a much smaller area of homogeneous clutter echoes to estimate the covariance matrix of the interference; 2) it provides an optimum processing of the radar echoes when the radar operates in frequency agility, as electronic counter-countermeasure (ECCM) strategy. A closed form performance analysis is provided for the MBGLRT-LQ detector, which is used to compare it with the single-band version. An application to live recorded data is also presented to validate the obtained results  相似文献   

6.
The performance of six polarimetric target detection algorithms is analyzed. The detection performance of the optimal polarimetric detector (OPD), the identity-likelihood-ratio-test (ILRT), the polarimetric whitening filter (PWF), the single-polarimetric channel detector, the span detector, and the power maximization synthesis (PMS) detector is compared. Results are presented for both probabilistic and deterministic targets in the presence of complex Gaussian clutter. The results indicate that the PWF and the ILRT typically achieve near optimal performance. The remaining detection algorithms typically yield performance that is degraded compared to the performance of the OPD, the PWF, and the ILRT  相似文献   

7.
For pt. I see ibid., vol. 38, no. 4, p. 1295 (2002). In this second part we deal with the problem of detecting subspace random signals against correlated non-Gaussian clutter modeled by the compound-Gaussian distribution. In the first part of the paper, we derived the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector; we also provided some interesting interpretations of them. In this second part, these detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters. Numerical examples concern a space-time adaptive processing (STAP) scenario and a ground-based surveillance radar system scenario.  相似文献   

8.
Nonparametric Radar Extraction Using a Generalized Sign Test   总被引:3,自引:0,他引:3  
A nonparametric procedure used in a constant false alarm rate (CFAR) radar extractor for detecting targets in a background of noise with unknown statistical properties is described. The detector is based on a generalization of the well-known two-sample sign test and thus requires a set of reference noise observations in addition to the set of observations being tested for signal presence. The detection performance against Gaussian noise is determined for a finite number of observations and asymptotically, for both nonfluctuating and pulse-to-pulse Rayleigh fluctuating target statistics. It is noted that the performance loss, as compared to the optimum parametric detector, depends critically on the number of reference noise observations available when the number of hits per target is not large. In the same case a much larger loss is also found for a pulse-to-pulse fluctuating target even though the asymptotic loss is the same as for a nonfluctuating target. A comparison is finally made with a detector based on the Mann-Whitney test, which usually is considered to be one of the better nonparametric procedures for the two-sample case.  相似文献   

9.
Waveform Design for Multistatic Radar Detection   总被引:1,自引:0,他引:1  
We derive the optimal Neyman-Pearson (NP) detector and its performance, and then present a methodology for the design of the transmit signal for a multistatic radar receiver. The detector assumes a Swerling I extended target model as well as signal-dependent noise, i.e., clutter. It is shown that the NP detection performance does not immediately lead to an obvious signal design criterion so that as an alternative, a divergence criterion is proposed for signal design. A simple method for maximizing the divergence, termed the maximum marginal allocation algorithm, is presented and is guaranteed to find the global maximum. The overall approach is a generalization of previous work that determined the optimal detector and transmit signal for a monostatic radar.  相似文献   

10.
Under the Advanced Research Projects Agency (ARPA)/ASTO sponsorship, through a contract from the Naval Air Warfare Center (NAWC), the Environmental Research Institute of Michigan (ERIM) has developed an ultrawideband (UWB) very high frequency (VHF)/ultrahigh frequency (UHF) fully polarimetric airborne synthetic aperture radar (SAR) for studying the detection of foliage-obscured objects. The radar is installed in the NAWC P-3 testbed aircraft and takes advantage of existing ERIM-built multimode, fully-polarimetric X/L/C-band SAR hardware. This paper describes the radar and presents some examples of its capabilities including polarimetric imagery and two-pass interferometric surface height estimates  相似文献   

11.
We present a new method for automatic target/object classification by using the optimum polarimetric radar signatures of the targets/objects of interest. The state-of-the-art in radar target recognition is based mostly either on the use of single polarimetric pairs or on the four preset pairs of orthogonal polarimetric signatures. Due to these limitations, polarimetric radar processing has been fruitful only in the area of noise suppression and target detection. The use of target separability criteria for the optimal selection of radar signal state of polarizations is addressed here. The polarization scattering matrix is used for the derivation of target signatures at arbitrary transmit and receive polarization states (arbitrary polarization inclination angles and ellipticity angles). Then, an optimization criterion that minimizes the within-class distance and maximizes the between-class metrics is used for the derivation of optimum sets of polarimetric states. The results of the application of this approach on real synthetic aperture radar (SAR) data of military vehicles are obtained. The results show that noticeable improvements in target separability and consequently target classification can be achieved by the use of the optimum over nonoptimum signatures  相似文献   

12.
The work presented here addresses the problem of target detection against spatially structured interference composed of jamming plus noise, where for practical reasons, the received target wavefront may also deviate from the traditional plane wave model. This detection problem arises in over-the-horizon (OTH) radar systems where spatially distributed targets often compete for detection against directional interference that is spread over the entire range-Doppler search space. Conventional detection processing schemes are compared with a recently proposed adaptive subspace detector (ASD) that takes both the spatial structure of the interference and the possibility of target wavefront distortions into account. Experimental array data recorded by the Jindalee sky-wave and Iluka surface-wave OTH radar systems, located in central and northern Australia respectively, is used to evaluate detection performance.  相似文献   

13.
We derive the optimum radar receiver to detect fluctuating and non-fluctuating targets against a disturbance which is modeled as a mixture of coherent K-distributed and Gaussian-distributed clutter. In addition, thermal noise, which is always present in the radar receiver, is considered. We discuss the implementation of the optimum coherent detector, which derives from the likelihood ratio test under the assumption of perfectly known disturbance statistics, and evaluate its performance via a numerical procedure, when possible, and via Monte Carlo simulation otherwise. Moreover, we compare the performance of the optimum detector with those of two detectors which are optimum for totally Gaussian and totally K-distributed clutter respectively, when they are fed with such a mixed disturbance. We conclude that, though the optimum detector has a larger computational cost, it provides sensibly better detection performance than the mismatched detectors in a number of operational situations. Thus, there is a need to derive suboptimum target detectors against the mixture of disturbances which trade-off the detection performance and the implementation complexity  相似文献   

14.
The PRSD detector improves radar performance by controlling the distribution of energy in space, thus making a radar adaptive to its environment. An increase in performance over classical detectors may be realized in any of several ways: 1) greater maximum range; 2) smaller minimum detectable targets; 3) higher data rates; 4) lower average transmitted power, which allows smaller size and weight of equipment. The model of the PRSD detector described herein was tested with a semi-agile beam radar, and gave measured field performance improvement (for this particular radar) equivalent to an S/N increase ranging from 5 to 22 dB with a mean of 9.5 dB. This increase is greater than the 5-dB improvement predicted for the system in a white noise environment because many of the field tests were at locations subjected to heavy interference. The PRSD detector was extremely effective reducing the interference. In this paper, we will briefly review the theory of operation, describe the equipment and the method of test, and present experimental data. The data presented here are essential to a complete understanding of sequential detection since a rigorous theory encompassing multiple range bin radar has not been developed at this time. Finally, an extensive bibliography is appended.  相似文献   

15.
It is shown that in a situation where a radar target is distant enough from the radar and is included in a natural or artificial clutter environment in such a manner that the conventional detection methods fail, it is possible to improve the radar detection performance by using appropriate signal processing on two orthogonal polarization states. A CFAR (constant false alarm rate) polarimetric detection system based on the study of the polarization difference between clutter and target is proposed. Since the polarization state of the clutter echoes fluctuates slowly from cell to cell, an autoregressive model can be applied to the components of the polarization vector to predict the detection thresholds needed to follow the polarization state variation. The detection thresholds are determined to maintain a false alarm probability equal to 10-6. The presence of a target registers as a significant variation of the estimation error of the polarization vector. Results obtained from measurements of simple and canonical targets with artificial clutter are presented, and these results validate the principle of polarimetric detection  相似文献   

16.
This paper studies an electronic counter-counter measures (ECCM) scheme combating against deceptive electronic counter measure (ECM) techniques.An adaptive detector exploiting generalized likelihood ratio test (GRLT) criterion is applied to detect the presence of deceptive jamming in fractional Fourier transform (FrFT) domain.First,the generating mechanism of spurious frequencies is analyzed based on the Volterra serial.The proposed nonlinear distortion model based on power amplifier behavior is robust in distortion analysis when the memory effect is considered.Second,a modified adaptive beamformer orthogonal rejection test (ABORT) like detector in closed form is built.The proposed detector can discriminate the echo and deceptive jamming adaptively by exploiting primary data and secondary data.This ECCM scheme is capable of guaranteeing the performance without the restriction of orthogonality,which is essential for the ABORT detectors.The expansion to radar network is discussed as a special case at the final part of this paper.Numerical simulations demonstrate the effectiveness of the proposed method.  相似文献   

17.
For pt.II see ibid., vol. 30, no 1, (Jan. 1994). This paper considers how well a Hough transform detector with binary integration improves the performance of a typical surveillance radar. For Hough transform detection, binary integration offers some advantages over noncoherent integration when multiple targets appear in range-time space or when the detector receives signals with a wide range of power. We derive expressions for PF and PD for a Hough transform binary integrator and apply the expressions to a typical surveillance radar. The results show that for the case considered, the binary Hough integrator improves the power budget of the radar by about 3 dB for a nonfluctuating target and 1 dB for a highly fluctuating target  相似文献   

18.
This series papers describes analyses of a foliage penetration experiment undertaken by MIT Lincoln Laboratory to assess the ability of synthetic aperture radar (SAR) to detect targets under trees. Data were taken using the NASA/JPL UHF, L-, C-band fully polarimetric SAR over a forested area in Maine in July 1990. Future experiments are planned to measure the polarimetric properties of clutter and targets using the latest ultrawideband sensors with submeter resolutions and fully polarimetric data collection capabilities  相似文献   

19.
The authors assess the state of the art, focusing on their own contributions. Covered areas are the electromagnetic inverse problem in radar polarimetry, coherent polarization radar theory, partially coherent polarization radar theory, vector (polarization) inverse scattering approaches, the polarimetric matched filter approach, polarimetric Doppler radar applications in meteorology and oceanography, and image fidelity in microwave vector diffraction tomographic imaging  相似文献   

20.
A CFAR adaptive matched filter detector   总被引:3,自引:0,他引:3  
An adaptive algorithm for radar target detection using an antenna array is proposed. The detector is derived in a manner similar to that of the generalized likelihood-ratio test (GLRT) but contains a simplified test statistic that is a limiting case of the GLRT detector. This simplified detector is analyzed for performance to signals on boresight, as well as when the signal direction is misaligned with the look direction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号