首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Charles Cockell   《Space Policy》2002,18(4):263-266
During the past decade new questions in science have emerged that require broad inter-disciplinary approaches. ‘Do asteroids and comets cause extinctions?’ and ‘Was there, or is there, life on Mars?’ are just two examples of questions that cut across planetary or astronomical sciences and biological sciences. The re-emergent science of ‘astrobiology’ represents a new synthesis of inter-disciplinary thinking that in many respects bears similarities to what in the 18th and 19th century would have been called ‘Natural Sciences’. But new astrobiology offers the scientific community, including the space community, two important possibilities. First, an opportunity to galvanize diverse scientific disciplines together to answer some fundamental questions on the relationship between life and the cosmic environment and, second, a chance to create a new environment conducive to interdisciplinary thinking. This is in contrast to the general trend that occurred during the 20th century towards increasing specialization in the sciences. During the 21st century astrobiology has the potential to open rich and productive seams of research.  相似文献   

2.
In announcing a new Vision for the US space program, President George Bush committed the USA to “a long-term human and robotic program to explore the solar system”, via a return to the Moon, leading to exploration of Mars and other destinations. He also stated that other nations would be invited to join the vision. Many other nations have, or are developing, ‘exploration visions’ of their own. The potential for international cooperation therefore exists, both at the vision and program/project levels. This paper, based on Working Group discussions as part of an AIAA space cooperation workshop,1 presents an approach for maximizing the return on all global investments in space exploration. It proposes an international coordination mechanism through which all these various national activities could be integrated into an inherently global enterprise for space exploration, a ‘virtual program of programs’. Within the context of the coordination, individual activities would utilize the full range of cooperative mechanisms for implementation. A significant benefit of this mode of conducting cooperation is that it would not require the negotiation of complex overarching international agreements as a precondition for initiating international activity.  相似文献   

3.
Space ethics and protection of the space environment   总被引:1,自引:1,他引:0  
Mark Williamson   《Space Policy》2003,19(1):47-52
The construction of the International Space Station in low Earth orbit and the formulation of plans to search for life on Mars indicate that mankind is intent on making the space environment part of its domain. Publicity surrounding space tourism, in-space ‘burials’ and the sale of lunar ‘real estate’ suggests that, some time in the 21st century, the space environment will become an extension of our current terrestrial business and domestic environment. This prompts the question of our collective attitude towards the space environment and the degree to which we should regulate its use and protect it for future generations. This article offers a pragmatic view of an ethical code for space exploration and development, as far as it relates to the protection of the space environment.  相似文献   

4.
Landis GA 《Astrobiology》2001,1(2):161-164
On Earth, life exists in all niches where water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles. Even if present-day life does not exist on Mars, it is an interesting speculation that ancient bacteria preserved in salt deposits could be retrieved from an era when the climate of Mars was more conducive to life.  相似文献   

5.
The Space Exploration Initiative (SEI) will take mankind back to the Moon and then to Mars. Preliminary estimates of SEI life cycle cost (LCC) are central to assessing programme alternatives. SEI LCC should be estimated by identifying the additional cost to accomplish the initiative over and above the cost to sustain a ‘base’ of space activities. Results of a study of four SEI alternatives provided SEI LCC cost estimates ranging from $91 billion to $308 billion (constant 1989 US dollars) from 1992 through 2020, depending upon programme philosophy. SEI LCC will be driven by the philosophy and goals of the programme, and, given the goal of ‘permanence’, essentially indeterminate because of the open-ended time horizon.  相似文献   

6.
Jones EG  Lineweaver CH  Clarke JD 《Astrobiology》2011,11(10):1017-1033
We present a comprehensive model of martian pressure-temperature (P-T) phase space and compare it with that of Earth. Martian P-T conditions compatible with liquid water extend to a depth of ~310?km. We use our phase space model of Mars and of terrestrial life to estimate the depths and extent of the water on Mars that is habitable for terrestrial life. We find an extensive overlap between inhabited terrestrial phase space and martian phase space. The lower martian surface temperatures and shallower martian geotherm suggest that, if there is a hot deep biosphere on Mars, it could extend 7 times deeper than the ~5?km depth of the hot deep terrestrial biosphere in the crust inhabited by hyperthermophilic chemolithotrophs. This corresponds to ~3.2% of the volume of present-day Mars being potentially habitable for terrestrial-like life.  相似文献   

7.
Magnetism, iron minerals, and life on Mars   总被引:1,自引:0,他引:1  
A short critical review is provided on two questions linking magnetism and possible early life on Mars: (1) Did Mars have an Earth-like internal magnetic field, and, if so, during which period and was it a requisite for life? (2) Is there a connection between iron minerals in the martian regolith and life? We also discuss the possible astrobiological implications of magnetic measurements at the surface of Mars using two proposed instruments. A magnetic remanence device based on magnetic field measurements can be used to identify Noachian age rocks and lightning impacts. A contact magnetic susceptibility probe can be used to investigate weathering rinds on martian rocks and identify meteorites among the small regolith rocks. Both materials are considered possible specific niches for microorganisms and, thus, potential astrobiological targets. Experimental results on analogues are presented to support the suitability of such in situ measurements.  相似文献   

8.
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

9.
Ragnar E Lofstedt   《Space Policy》2003,19(4):1096-292
In 2014 NASA may bring back a sample of Mars rocks, soil and atmosphere to Earth. The most likely location for returning this sample will be somewhere in the central USA. The purpose of the project is to understand the history of Mars; the samples may also reveal evidence of previous or existing life on Mars. Confirmation of this possibility would rank as one of the most profound discoveries in human history, yet to date it is unclear how the public in the USA actually views the mission. This study addresses this issue by examining the views of 70 residents of Cincinnati, OH. These perceptions are examined in light of the conceptual ideas and theories presented in the risk perception and communication literatures. While respondents were generally favourable towards a Mars sample return mission, and largely unworried by possible risks, they did have concerns about the use of plutonium for electrical propulsion and were somewhat ill-informed about the issues.  相似文献   

10.
Over 200 school children in eight schools in the east of England were surveyed to determine their interest in space exploration and awareness of current space activities. Of those surveyed, 33% were interested in space to ‘discover a new planet’, and 24% to find life on another planet. When asked to list space exploration organisations 77% listed NASA. Six of those surveyed listed ESA (<0.5%). The data bring starkly to light, despite the Huygens landing on Titan and Mars Express, the lack of awareness of the existence of ESA among a new generation of European school children. These data suggest that further surveys are merited to determine the factors that influence interest in space sciences and related disciplines among school children, and the source of their information.  相似文献   

11.
Duncan Lunan   《Space Policy》2002,18(2):163
Although best known for his political and social achievements, the late Lord Young was also an early advocate of space exploration and cooperation. This article describes his proposal for a simulated Mars habitation, the ‘Argo Venture’, and the steps that were taken to try and bring it about. Although financial support was ultimately withdrawn in the face of the US Biosphere 2 project, a number of current Mars-related projects suggest that the Argo Venture is not entirely forgotten.  相似文献   

12.
Water, vital for life, not only maintains the integrity of structural and metabolic biomolecules, it also transports them in solution or colloidal suspension. Any flow of water through a dormant or fossilized microbial community elutes molecules that are potentially recognizable as biomarkers. We hypothesize that the surface seepage channels emanating from crater walls and cliffs in Mars Orbiter Camera images results from fluvial erosion of the regolith as low-temperature hypersaline brines. We propose that, if such flows passed through extensive subsurface catchments containing buried and fossilized remains of microbial communities from the wet Hesperian period of early Mars (approximately 3.5 Ga ago), they would have eluted and concentrated relict biomolecules and delivered them to the surface. Life-supporting low-temperature hypersaline brines in Antarctic desert habitats provide a terrestrial analog for such a scenario. As in the Antarctic, salts would likely have accumulated in water-filled depressions on Mars by seasonal influx and evaporation. Liquid water in the Antarctic cold desert analogs occurs at -80 degrees C in the interstices of shallow hypersaline soils and at -50 degrees C in salt-saturated ponds. Similarly, hypersaline brines on Mars could have freezing points depressed below -50 degrees C. The presence of hypersaline brines on Mars would have extended the amount of time during which life might have evolved. Phototrophic communities are especially important for the search for life because the distinctive structures and longevity of their pigments make excellent biomarkers. The surface seepage channels are therefore not only of geomorphological significance, but also provide potential repositories for biomolecules that could be accessed by landers.  相似文献   

13.
Space Biospheres Ventures is developing technologies for its Biosphere 2 project — a 3 acre materially closed ecological system with human habitat, intensive agriculture and five wilderness biomes — and other life-support testbeds for space habitats in microgravity and the Moon and Mars, as well as for ecological research pertinent to the biosphere of Earth. These include soil bed reactors for air purification and biomass production; aquatic waste processing systems; real-time analytic systems; and computer systems of control and management. A space policy pursuing joint Earth and ‘space biospheres’ objectives and implications is discussed.  相似文献   

14.
Impact seeding and reseeding in the inner solar system   总被引:3,自引:0,他引:3  
Assuming that asteroidal and cometary impacts onto Earth can liberate material containing viable microorganisms, we studied the subsequent distribution of the escaping impact ejecta throughout the inner Solar System on time scales of 30,000 years. Our calculations of the delivery rates of this terrestrial material to Mars and Venus, as well as back to Earth, indicate that transport to great heliocentric distances may occur in just a few years and that the departure speed is significant. This material would have been efficiently and quickly dispersed throughout the Solar System. Our study considers the fate of all the ejected mass (not just the slowly moving material), and tabulates impact rates onto Venus and Mars in addition to Earth itself. Expressed as a fraction of the ejected particles, roughly 0.1% and 0.001% of the ejecta particles would have reached Venus and Mars, respectively, in 30,000 years, making the biological seeding of those planets viable if the target planet supported a receptive environment at the time. In terms of possibly safeguarding terrestrial life by allowing its survival in space while our planet cools after a major killing thermal pulse, we show via our 30,000- year integrations that efficient return to Earth continues for this duration. Our calculations indicate that roughly 1% of the launched mass returns to Earth after a major impact regardless of the impactor speed; although a larger mass is ejected following impacts at higher speeds, a smaller fraction of these ejecta is returned. Early bacterial life on Earth could have been safeguarded from any purported impact-induced extinction by temporary refuge in space.  相似文献   

15.
Planetary protection policies designed to reduce the cross-transfer of life on spacecraft from one planet to another can either be formulated from the pragmatic instrumental needs of scientific exploration, or from ethical principles. I address planetary protection concerns by starting from a normative ethical framework for the treatment of microorganisms. This argues that they have intrinsic value at the level of the individual through to the level of the community, but at the individual level this ethic can only be theoretical. This approach yields a solution to the problem of the inevitable contamination of Mars by human explorers and suggests that in some instances the local contamination of other planets may be acceptable. An exception would be where this contamination would cause destruction of microbial ecosystems. Within the framework of such an ethic, the term ‘planetary protection’ may be normatively too narrow and ‘planetary preservation’ may better describe the activity of controlling cross-inoculation of planets. I discuss an example of a contamination event that might be ethically acceptable within the framework of ‘preservation’, but would be regarded as unacceptable under current planetary ‘protection’ guidelines.  相似文献   

16.
A central question in astrobiology is whether life exists elsewhere in the universe. If so, is it related to Earth life? Technologies exist that enable identification of DNA- or RNA-based microbial life directly from environmental samples here on Earth. Such technologies could, in principle, be applied to the search for life elsewhere; indeed, efforts are underway to initiate such a search. However, surveying for nucleic acid-based life on other planets, if attempted, must be carried out with caution, owing to the risk of contamination by Earth-based life. Here we argue that the null hypothesis must be that any DNA discovered and sequenced from samples taken elsewhere in the universe are Earth-based contaminants. Experience from studies of low-biomass ancient DNA demonstrates that some results, by their very nature, will not enable complete rejection of the null hypothesis. In terms of eliminating contamination as an explanation of the data, there may be value in identification of sequences that lie outside the known diversity of the three domains of life. We therefore have examined whether a fourth domain could be readily identified from environmental DNA sequence data alone. We concluded that, even on Earth, this would be far from trivial, and we illustrate this point by way of examples drawn from the literature. Overall, our conclusions do not bode well for planned PCR-based surveys for life on Mars, and we argue that other independent biosignatures will be essential in corroborating any claims for the presence of life based on nucleic acid sequences.  相似文献   

17.
The NASA/White House Vision for Space Exploration is primarily focused on the development of human and robotic systems that will enable ‘discovery-driven’ investigations in areas important to the scientific community: Mars, the solar system's outer moons, and planets orbiting other stars. Such a portfolio can only be realized if NASA is prepared to target investment at opportunities that are most scientifically compelling. NASA's leaders will have to make decisions in subjective and uncertain environments about the relative long-term value of different kinds of scientific discoveries seen as equally important to different groups. A management paradigm of this kind will imply assessment of heterogeneous priorities and management of interdependent and changing requirements. In order to identify the basis and implications of a ‘discovery-driven’ paradigm, this paper surveys the relationship between the Vision's principles and its programmatic content, the objectives of the Vision's scientific focus areas and their interrelationships, and the public context in which science-focused exploration will proceed.  相似文献   

18.
A recent paper in this journal criticized the two methods commonly used to allocate the costs of multi-payload launches, and proposed two new alternatives. The paper argued that ‘Shapley-value’ pricing and the ‘Independent Cost Proportional Scheme’ are immune to instability problems possible under the traditional mass-proportional approach, and reduce ‘subsidies’ paid to small payloads. This rejoinder shows that neither claim is true in general. It also questions whether new pricing formulas are truly needed — or even sustainable in today's competitive market.  相似文献   

19.
John D. Rummel   《Acta Astronautica》2009,64(11-12):1293-1297
“Special regions” on Mars are areas designated in the COSPAR planetary protection policy as areas that may support Earth microbes inadvertently introduced to Mars, or that may have a high probability of supporting indigenous martian life. Since absolutely nothing is known about martian life, the operational definition of a special region is a place that may allow the formation and maintenance of liquid water, on or under the surface of Mars. This paper will review the special-regions concept, the implications of recent recommendations on avoiding them, and the work of the Mars science community in providing an operational definition of those areas on Mars that are “non-special.”  相似文献   

20.
In October 2004, more than 130 terrestrial and planetary scientists met in Jackson Hole, WY, to discuss early Mars. The first billion years of martian geologic history is of particular interest because it is a period during which the planet was most active, after which a less dynamic period ensued that extends to the present day. The early activity left a fascinating geological record, which we are only beginning to unravel through direct observation and modeling. In considering this time period, questions outnumber answers, and one of the purposes of the meeting was to gather some of the best experts in the field to consider the current state of knowledge, ascertain which questions remain to be addressed, and identify the most promising approaches to addressing those questions. The purpose of this report is to document that discussion. Throughout the planet's first billion years, planetary-scale processes-including differentiation, hydrodynamic escape, volcanism, large impacts, erosion, and sedimentation-rapidly modified the atmosphere and crust. How did these processes operate, and what were their rates and interdependencies? The early environment was also characterized by both abundant liquid water and plentiful sources of energy, two of the most important conditions considered necessary for the origin of life. Where and when did the most habitable environments occur? Did life actually occupy them, and if so, has life persisted on Mars to the present? Our understanding of early Mars is critical to understanding how the planet we see today came to be.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号