首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
为了研究细水雾喷头在不同喷射压力情况下针对油盘火的灭火效果,采用正庚烷为火灾燃料,在4.6m×3.3m×4m(长×宽×高)的空间内,针对同一型号的细水雾喷头在不同喷射压力下进行了灭火实验,在实验过程中采用热电偶树和气体分析仪对火焰温度及火场氧浓度进行了测量,得到了不同喷射压力下细水雾灭火的影响规律,为细水雾灭火设计、检验标准制定及细水雾灭火产品的开发提供了相应的实验依据.  相似文献   

2.
油盘火热释放率影响细水雾灭火特性试验   总被引:2,自引:1,他引:1  
为了研究细水雾针对不同热释放率条件下的灭火特性及规律,采用7种不同尺寸油盘火模型和正庚烷燃料,在4.6m×3.2m×4m的空间内,进行了单喷头和四喷头灭火试验,试验过程中采用热电偶树和气体分析仪对火焰温度及火场氧浓度进行了测量,得到了不同热释放率条件下的细水雾灭火特性规律和灭火过程中火场温度场的变化规律,为细水雾灭火系统设计、检验标准制定及细水雾灭火产品开发提供了相应的试验依据.   相似文献   

3.
气泡雾化喷嘴水平喷射的雾化特性研究   总被引:6,自引:1,他引:6  
研究了水平喷射、端面注气方式的气泡雾化喷嘴结构及工作参数对雾化及流场特性的影响.试验全部在常温常压下进行,液体采用水,雾化气为压缩空气.用2D PDA测量了液雾的平均直径尺寸分布和速度分布.液体喷射压力变化范围200~600 kPa,气液比变化范围4%~10%左右.试验研究了端面注气方式下,注气孔孔径及数目、混合管长度、液体流动状态及工作参数对雾化特性的影响.结果表明,水平喷射的气泡喷嘴,注气孔的尺寸及数目均对雾化特性产生影响;混合段存在一最佳值范围,在此范围内,喷嘴可获得高的雾化质量;液体旋转流动对雾化特性无显著影响,但可影响两相流动中气泡的分布.  相似文献   

4.
两相流气体种类灭B类火效果的实验   总被引:1,自引:0,他引:1  
两相流灭火系统中,气相采用不同的气体,其灭火效果不同.研究了采用空气、氮气、二氧化碳、氩气4种不同种类气体条件下,两相流细水雾灭火系统在3.6 m×4.6 m×3.9 m的空间内,灭0.1 MW及0.61 MW方油盘火的灭火特性及规律.实验过程中采用热电偶树和西门子气体分析仪对火焰温度及火场氧体积分数进行了测量,得到了不同气体种类条件下的细水雾灭火特性包括火焰最高温度、温度下降速率、氧体积分数下降速率、灭火时间等参数的变化规律和灭火过程中火场温度场和氧体积分数值的变化规律.  相似文献   

5.
针对最大流量原理法在设计小几何特性小孔径细水雾离心喷嘴方面的不足,采用Fluent软件中的多相流混合模型,模拟了包含蒸气和水两相的喷嘴内部流动,得到了流量、喷雾锥角等宏观参数,并和实验测量数据以及理论计算值进行了对比,分析了不同结果产生的原因;同时,还对喷嘴内的气液两相体积分数、轴向与切向速度、压力分布等流场特性参数进行了分析,着重论述了与理论模型之间的差异以及相应的机理.数值模拟方法考虑了液体的粘性和壁面摩擦力等因素,较好地反映了喷嘴内部的流场特性,为小几何特性小孔径细水雾离心喷嘴的设计提供了借鉴.   相似文献   

6.
在横向气流中直射喷嘴雾化研究及超音速气流中喷嘴雾化研究的基础上,针对工业窑炉中烧嘴以重油(通常为油渣)工作的问题,设计和试验研究了内混音速气流两次空气雾化重油喷嘴,从原理上解决了喷嘴雾化细度(燃烧完全)和火焰长度(刚性)之间的矛盾。文中得出合理选择这种喷嘴的结构形式、几何尺寸以及混合腔压力,同时得出很好的雾化细度以及要求的火焰长度。结果表明,混合腔压力与供气压力之比应在0.60~0.70之间,所需压缩空气的压力为0.4MPa,所设计的喷嘴已投入使用。  相似文献   

7.
气泡雾化喷嘴的试验研究   总被引:3,自引:0,他引:3  
进行了组不同结构形式的气泡雾化喷嘴的试验研究,初步试验结果表明:这种新型喷嘴对液体介质粘度不敏感,在小气液比条件下获得了很好的雾化效果,雾化性能明显优于从国外引进的某些空气雾化喷嘴,该成果已于1993年2月7日被授予中华人民共和国实用型专利。  相似文献   

8.
本文通过用于一短环形高压燃烧室上的空气雾化喷嘴的研制,进行了大量实验,分别研究了雾化空气速度、燃烧室压力、气液比、介质种类和几种不同构造参数的喷嘴结构对空气雾化喷嘴喷雾锥角与后方燃油浓度分布的影响,对高压下空气雾化喷嘴后方燃油浓度分布研究这一新课题做了有益的探索。  相似文献   

9.
直射式喷嘴垂直跨流喷射的雾化特性试验研究   总被引:1,自引:0,他引:1  
应用Malvern激光粒子分析仪在气流速度50-150m/s,供油压力1.0786-4.1188MPa,喷嘴孔径0.5-0.9mm,喷嘴下流距离60-250mm参范围内试验研究了直射式喷嘴垂直跨流喷射的雾化特性沿径向位置、射流穿透深度与最大浓度线的变化,双喷嘴的雾化特性以及稳定器对雾化特性的影响。  相似文献   

10.
喷雾冷却系统稳态特性的实验研究   总被引:2,自引:0,他引:2  
设计了一套可观察喷雾过程中的喷雾锥角、雾化效果、发热面上液膜及腔内气液分布状态的实验系统。验证了喷雾冷却技术解决极高热流密度散热问题的能力。通过实验研究了该系统的传热性能与稳态运行特性,分析了流量、喷嘴压降、喷雾高度、热流密度、热沉温度及回流液体过冷度等因素对系统传热性能和特性的影响。  相似文献   

11.
高强钢铣削中微量润滑技术效果的试验分析   总被引:1,自引:1,他引:0  
为了验证微量润滑技术对刀具磨损及工件表面粗糙度的影响,研制出一套微量润滑系统,利用压缩气体流经的截面变小所产生的压强差来吸取箱体中的液体,并传输到喷嘴进行雾化.将其应用在高强度钢铣削加工中.试验结果表明:相对于干切削和传统浇注冷却,微量润滑技术具有明显的优势,它可有效地减小刀具磨损,并将工件表面粗糙度控制在较低的水平,尤其在高转速、大切深、快进给加工中,同时其还具有结构简单、冷却液用量小、对环境污染小等优点.对试验结果进行了初步分析.  相似文献   

12.
音速喷嘴中流动的蒸汽或含湿气体由于自身的温降而发生凝结现象,对音速喷嘴的计量会产生一定的影响。针对音速喷嘴凝结现象和自激振荡的复杂变化情况,利用一套凝结实验平台研究了音速喷嘴内湿空气凝结现象,得到了不同条件的喷嘴沿程压力,并建立了凝结流动Eulerian两相模型,对凝结现象的影响因素进行了数值分析,使实验结果得到了验证和补充。结果表明,载气的压力、温度、湿度会对凝结产生比较大的影响。凝结发生位置伴随载气温度、湿度的提高而前移,强度有所增大。随着载气压力的增大,凝结发生位置前移,但是强度相对减弱。自激振荡的频率与载气湿度、温度呈正相关,与载气压力呈负相关,振幅与载气的压力、温度、湿度均呈正相关。  相似文献   

13.
为研究塞式喷管的高度特性和底部特性,采用高压空气为工作介质对单元直排塞式喷管进行实验.研究了底部盖板、底部二次流对性能的影响和塞锥壁面压强分布.实验结果表明:无底部盖板可提高塞式喷管低空性能2%~7%;底部二次流可提高底部压强,减少底部开闭状态转变过程带来的推力突降;底部二次流流量以1%~1.5%为宜,过大将引起喷管性能下降.本实验喷管设计点效率均超过99%,部分实验接近100%,高度补偿效果明显.  相似文献   

14.
油面距油盘沿口高度对细水雾灭火效果的影响   总被引:1,自引:0,他引:1  
油盘火是细水雾灭火效果检验的标准实验火灾模型,为了确定细水雾针对油盘火模型的实验方法,采用正庚烷为火灾燃料,在长4.6m,宽3.2m,高4m的空间内,对油面距油盘沿口高度进行了灭火实验,在实验过程中采用热电偶树和气体分析仪对火焰温度及火场氧浓度进行了测量,得到了油面距油盘沿口高度对细水雾灭火效果的影响规律,为细水雾灭火设计、检验标准制定及细水雾灭火产品的开发提供了相应的实验依据.   相似文献   

15.
为提高两相涡街湿气测量精度,针对传统涡街过读公式预测精度差、适用范围受限问题,提出基于夹带液滴参数(夹带率和粒径)的涡街过读预测模型。为进行不同夹带液滴工况的实验研究,建立基于雾化混合的可调压环雾状流实验装置,并建立光学图像法测量系统,获得液滴直径及其分布信息。结合环雾状流型及涡街过读机制,考虑液滴-液膜传质和液滴-旋涡耦合作用,提出影响涡街过读的无量纲尺度参数。建立基于液相加载量、韦伯数和斯托克斯数的涡街过读预测模型,将夹带液滴参数和载气参数(密度和速度)的影响考虑在内,理论上可拓展公式适用范围。最后,评估现有过读关联式的预测性能,并结合实验和模型假设中夹带液滴参数的差异进行详细分析,进一步确认了夹带率和粒径对涡街过读特性的重要影响。结果表明:所提模型在不同液滴夹带条件下都给出了很好的预测,相对偏差在±1.0%以内,预测精度和可拓展性较其他公式有了较大提高。  相似文献   

16.
塞式喷管热试实验和数值模拟   总被引:2,自引:0,他引:2  
以气氢/气氧为推进剂,对三单元直排塞式喷管发动机进行了热试实验和数值模拟研究.介绍了实验系统及实验发动机主要零部件的结构和设计参数,给出了实验参数测量结果、实验照片和数据分析.数值模拟研究了塞式喷管的流场特点,数值预示了实验塞式喷管发动机的高度特性曲线.无再生冷却塞式喷管发动机采用耐烧蚀材料钨渗铜加工内喷管和燃烧室内衬,碳钢材料加工塞锥.使用爆震波点火器点燃多个单元推力室,成功进行了热试实验.在2个压比下获得了塞式喷管性能数据,实验表明,塞式喷管具有良好的高度补偿能力和较高的喷管效率.在CNPR=50附近,效率达到92%~93.5%;在CNPR=350附近,效率达到95%~96%.预计在设计点的效率不低于98%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号