首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Simulation model for the closed plant experiment facility of CEEF.   总被引:1,自引:0,他引:1  
The Closed Ecology Experiment Facilities (CEEF) is a testbed for Controlled Ecological Life Support Systems (CELSS) investigations. CEEF including the physico-chemical material regenerative system has been constructed for the experiments of material circulation among plants, breeding animals and crew of CEEF. Because CEEF is a complex system, an appropriate schedule for the operation must be prepared in advance. The CEEF behavioral Prediction System, CPS, that will help to confirm the operation schedule, is under development. CPS will simulate CEEFs behavior with data (conditions of equipments, quantity of materials in tanks, etc.) of CEEF and an operation schedule that will be made by the operation team everyday, before the schedule will be carried out. The result of the simulation will show whether the operation schedule is appropriate or not. In order to realize CPS, models of the simulation program that is installed in CPS must mirror the real facilities of CEEF. For the first step of development, a flexible algorithm of the simulation program was investigated. The next step was development of a replicate simulation model of the material circulation system for the Closed Plant Experiment Facility (CPEF) that is a part of CEEF. All the parts of a real material circulation system for CPEF are connected together and work as a complex mechanism. In the simulation model, the system was separated into 38 units according to its operational segmentation. In order to develop each model for its corresponding unit, specifications for the model were fixed based on the specifications of the real part. These models were put into a simulation model for the system.  相似文献   

2.
In order to study the relationship between the physiological metabolism of living things and the environmental factors such as the atmospheric contents and so on within the closed ecosystem, Closed Ecology Experiment Facilities (CEEF) were designed and now under construction based on the following concepts: (1) Individual sealed chambers (called modules) for the plant cultivation, animal breeding, human habitation and microbial waste treatment are to be constructed independently to be able to study the metabolic effects of each living thing on the environmental factors within closed ecosystem. (2) A chamber for the microbial waste treatment are to be replaced with two systems; wet oxidation reactors and chemical nitrogen fixation reactors. (3) Atmospheric control systems are to be independently attached to each module for stabilizing atmospheric contents in each module. (4) Any construction materials having the possibility to absorb oxygen and carbon dioxide are to be prohibited to use in each module for sustaining material balance. (5) Facilities have to be developed so that the closed plant and animal experiments can be done independently, as well as integrated experiments with plants and animals through exchanging foods, carbon dioxide, oxygen, condensed water and nutrient solution.  相似文献   

3.
In order to control the material circulation in the Closed Ecology Experiment Facilities (CEEF), it is necessary to clarify material flow in the Closed Plant Experiment Facility (CPEF) of CEEF. We tried to grow rice plants and measure the nitrogen contents in rice plant and nutrient solution in plant cultivation bed to trace the material balance in CPEF. The measurements were carried out under the condition of 750 ppm (v/v) CO2 at 26/19 degrees C in the plant cultivation room. The measurements showed the absorbed nitrogen amount in plant was less than the outflow nitrogen amount from nutrient solution. This difference between absorbed and outflow quantity reached to 17%.  相似文献   

4.
Human habitation and animal holding experiments in a closed environment, the Closed Ecology Experiment Facilities (CEEF), were carried out. The CEEF were established for collecting experimental data to estimate carbon transfer in the ecosystem around Rokkasho nuclear fuel reprocessing plant. Circulation of O2 and CO2, and supply of food from crops cultivated in the CEEF were conducted for the first time in the habitation experiments. Two humans known as eco-nauts inhabited the CEEF, living and working in the Plant Module (PM) and the Animal and Habitation Module (AHM), for a week three times in 2005. On a fresh weight basis, 82% of their food was supplied from 23 crops including rice and soybean, cultivated and harvested in the PM, in the 2nd and 3rd experiments. For the goats, the animals held in the experiments, all of their feed, consisting of rice straw, soybean plant leaves, and peanut shells and peanut plant leaves, was produced in the PM in the 2nd and 3rd experiments. The O2 produced in the PM by photosynthesis of the crops was separated by the O2 separator using molecular sheaves, then accumulated, transferred, and supplied to the AHM atmosphere. The CO2 produced in the AHM by respiration of the humans and animals was separated by the CO2 separator using solid amine, then accumulated, transferred, and supplied to the PM atmosphere. The amount of O2 consumed in the AHM was 46–51% of that produced in the PM, and the amount of CO2 produced in the AHM was 43–56% of that consumed in the PM. The surplus of O2 and the shortage of CO2 was a result of the fact that waste of the goats and the crops and part of the human waste were not processed in these habitation experiments. The estimated amount of carbon ingested by the eco-nauts was 64–92% of that in the harvested edible part of the crops. The estimated amount of carbon ingested by the goats was 36–53% of that in the harvested inedible part of the crops. One week was not enough time for determination of gas exchange especially for humans and animals, because fluctuation of their gas exchange was quite high. The amount of transpired water collected as condensate was 818–938 L d−1, and it was recycled as replenishing water compensating transpiration loss of nutrient solution. The amount of waste nutrient solution discharged from the PM was 1421–1644 L d−1. The waste nutrient solutions from rice and other crops were processed through micro filters (MFs) separately. The MF filtrated solutions were processed with reverse osmosis (RO) membrane filter separately and divided into filtrated water and concentrated waste nutrient solution. The concentrated waste nutrient solution from the crops other than rice was processed through an ultra-micro filter (UF) and reused, although that from rice was discharged in 2005. Concentrations of nutritional ions in the UF filtrated solution were determined, the depleted ions were added back, the UF filtrated solution was diluted with the RO membrane filtrated water, and the nutrient solution for the crops other than rice was regenerated. The nutrient solution for rice was newly made each time, using concentrated solution from an external source and the RO membrane filtrated water. Average amounts of water used in the AHM (L d−1) were determined as follows: drinking by humans (filtrated water), 1.5; cooking, etc. (filtrated water other than for drinking), 14.3; drinking by goats, 3.8; showering (hot water), 13.2; showering (cold water), 0.1; washing of hand and face and brushing teeth, 4.1; washing of dishes, dish clothes and towels, 36.4; and washing of animal holding tools, 0.3. The waste water was processed by a RO purification system and recycled for toilet flushing and animal pens washing. A circulation experiment for water was started in 2006 and a circulation experiment for waste materials is planned for 2007. In 2006, a single duration of the air circulation experiments was 2 weeks, although the human habitants were changed after 1 week.  相似文献   

5.
载人小行星探测任务总体方案研究   总被引:1,自引:1,他引:0  
设计了在近地轨道组装具有分组单元结构的载人深空飞船,包括核热推进单元、燃料储箱与供给单元、主动防辐射单元、人工重力单元、深空居住舱与多任务乘员舱等,给出了各个单元的尺寸与质量参数,并对主要单元的具体组成、功能和技术特点进行了分析。在此基础上,本文以编号4660的Nereus小行星为探测目标,设计了两脉冲转移初始轨道,并进行了轨道优化,得到了发射窗口和最优转移轨道。仿真结果表明,给出的最优两脉冲转移轨道单次施加脉冲在5km/s以内,单程转移时间在160d以内,能够满足未来能量较小的载人小行星探测任务。  相似文献   

6.
In order to predict carbon sequestration of vegetation with the future rise in atmospheric CO2 concentration, [CO2] and temperature, long term effects of high [CO2] and high temperature on responses of both photosynthesis and transpiration of plants as a whole community to environmental parameters need to be elucidated. Especially in the last decade, many studies on photosynthetic acclimation to elevated [CO2] at gene, cell, tissue or leaf level for only vegetative growth phase (i.e. before formation of reproductive organs) have been conducted all over the world. However, CO2 acclimation studies at population or community level for a whole growing season are thus far very rare. Data obtained from repeatable experiments at population or community level for a whole growing season are necessary for modeling carbon sequestration of a plant community. On the other hand, in order to stabilize material circulation in the artificial ecological system of Closed Ecology Experiment Facilities (CEEF), it is necessary to predict material exchange rates in the biological systems. In particular, the material exchange rate in higher plant systems is highly variable during growth periods and there is a strong dependence on environmental conditions. For this reason, dependencies of both CO2 exchange rate and transpiration rate of three rice populations grown from seed under differing conditions of [CO2] and day/night air temperature (350 microL CO2 L-1, 24/17 degrees C (population A); 700 microL CO2 L-1, 24/17 degrees C (population B) and 700 microL CO2 L-1, 26/19 degrees C (population C)) upon PPFD, leaf temperature and [CO2] were investigated every two weeks during whole growing season. Growth of leaf lamina, leaf sheath, panicle and root was also compared. From this experiment, it was elucidated that acclimation of instantaneous photosynthetic response of rice population to [CO2] occurs in vegetative phase through changes in ratio of leaf area to whole plant dry weight, LAR. But, in reproductive growth phase (i.e. after initiation of panicle formation), the difference between photosynthetic response to [CO2] of population A and that of population B decreased. Although LAR of population C was almost always less than that of population A, there was no difference between the photosynthetic response to [CO2] of population A at 24 degrees C and that of population C at 26 degrees C for its whole growth period. These results are useful to make a model to predict carbon sequestration of rice community, which is an important type of vegetation especially in Asia in future global environmental change.  相似文献   

7.
载人火星探测飞行方案   总被引:1,自引:0,他引:1  
对世界各国载人火星探测的研究情况进行了简要综述,研究了国内外有关载人火星探测飞行方案,提出了载人火星探测方案确定的原则和方案基本思想.给出了一种载人火星探测飞行方案的总体设计,包括飞行轨道方案和载人火星飞船方案等.尤其对轨道设计的重要的两个参数——速度增量和飞行时间进行了详细计算.最后给出了飞行轨道选择、火星飞船从地球到火星和从火星返回地球等的轨道方案和火星飞船各组成部分方案的详细设计结果.  相似文献   

8.
CEEF (Closed Ecology Experiment Facilities) were installed at Rokkasho village in northern Japan, for the purpose of clarifying life-support mechanisms in a completely closed space, such as a Lunar or Mars base. An integration test using the Closed Plantation Experiment Facility and Closed Animal Breeding & Habitation Experiment Facility is needed before conducting an entire closed experiment including plants, animals and humans. These integration tests are planned to be conducted step by step from fiscal 2001 to 2008.  相似文献   

9.
New test bed facilities such as Bioplex and CEEF have been constructed to test the new advanced technologies for solving the various problems as follows, (1) how to develop air content stabilization technologies with gas balance between the generation and the absorption by living organisms, (2) how to solve the mismatching between the assimilation rate of autotrophic organisms and the respiration rate of heterotrophic organisms, (3) how to balance the speed of the waste decomposition with the absorption speed of nutrient components in the sequential plant cultivation, (4) how to develop new nutrient adjusting subsystems for each plant species, (5) how to compensate the denitrification during the waste decomposition and anaerobic microbes in the nutrient solution.  相似文献   

10.
Materials Experiment on Tiangong-2 Space Laboratory   总被引:1,自引:1,他引:0       下载免费PDF全文
During the China's Tiangong-2 (TG-2) flight mission, the experiments of 18 kinds of material samples were conducted in space by using a Multiple Materials Processing Furnace (MMPF) mounted in the orbital module of the TG-2 space laboratory. After the experiments of 12 kinds of samples of the first and second batches were completed successfully, astronauts packed and brought them back to the ground by ShenzhouⅡ spacecraft. By studying processing and formation on semiconductor and optoelectronics materials, metal alloys and metastable materials, functional single-crystal, micro-and nano-composite materials encapsulated in sample ampoules both in space and on Earth, we expect to explore some physical and chemical processes and mechanism of the materials formation that are normally obscured and therefore are difficult to study quantitatively on the ground due to the gravity-induced convection, to obtain the processing and synthesis technology for preparing high quality materials, and lead to the improvement and development of materials processing techniques on Earth, and also develop the experiment device and comprehensive ability for materials experiment in microgravity environment. This report briefly introduces the main points of each research work and preliminary comparative analysis results of 12 samples carried out by scientists undertaking research task.   相似文献   

11.
Nuclear power generation is now confronted with a very difficult situation all over the world because of the problems of radioactive waste disposal and of the accidents, which have occurred. Nuclear power generation now supplies nearly 30% of total electric power demand in Japan. Therefore it is very difficult to change quickly the construction plans of nuclear facilities already designed. A nuclear fuel reprocessing center is now under construction in Rokkasho-Mura in Aomori Prefecture. If this center starts its operation, small amounts of 14CO2 are expected to be released into the atmosphere and will enter the global cycle. The simulation experiment of 14C trace amounts which enter into ecosystems is now being planned using stable isotope 13C within CEEF (Closed Ecology Experiment Facilities).  相似文献   

12.
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term “modular biospheres”, have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system “metabolism” and therefore are essentially a “mini-world”. Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.  相似文献   

13.
中长期载人航天器舱室为密闭环境,空气污染严重,极大影响了航天员的健康,有必要对该问题进行全面研究,提出新的空气质量评价方法评价舱室内的空气质量.在首次确定舱室单微量污染成分的分级模糊隶属度函数的基础上,提出采用模糊综合评价的灰关联分析方法评价中长期载人航天器舱室空气质量.该评价方法结合了模糊评价和灰色评价的优点,同时给出模糊分级结论和关联度分析结果,能反映舱室内空气质量状况及其变化规律.分析表明:评价结果信息含量大,能较好地反映载人航天器舱室内实际的空气质量状况,也能用于评价净化装置的工作性能.  相似文献   

14.
返回式卫星烧蚀热防护机理与数值模拟   总被引:2,自引:0,他引:2  
详细讨论了低温炭化材料的质量损失和吸热机理。利用分层模型,给出具有不同物理和化学特性的各层的能量守恒关系。用积分法给出各层热防护的数值模拟,数值模拟计算结果与一维热传导解析解结果一致,亦与地面烧蚀实验結果一致。  相似文献   

15.
微流星体及空间碎片的高速撞击威胁着长寿命、大尺寸航天器的安全运行,导致其严重的损伤和灾难性的失效。为精确估计微流星体及空间碎片高速撞击防护屏所产生碎片云对舱壁的损伤,必须确定碎片云中三种状态材料的特性,建立了碎片云特性分析模型,分别计算了柱状弹丸撞击防护屏所产生碎片云以及碎片云中弹丸和防护屏材料三种状态物质的质量分布。通过计算分析可见,弹丸以不同速度撞击防护屏所产生碎片云三种状态物质的质量分布是不同的,速度增大,液化和气化增强,对靶件的损伤小。而在速度小于7km/s时,碎片云以固体碎片的形式存在,对靶件的损伤大。  相似文献   

16.
In CELSS (Controlled Ecological Life Support System), utilization of photosynthetic algae is an effective means for obtaining food and oxygen at the same time. We have chosen Spirulina, a blue-green alga, and have studied possibilities of algae utilization. We have developed an advanced algae cultivation system, which is able to produce algae continuously in a closed condition. Major features of the new system are as follows. (1) In order to maintain homogeneous culture conditions, the cultivator was designed so as to cause a swirl on medium circulation. (2) Oxygen gas separation and carbon dioxide supply are conducted by a newly designed membrane module. (3) Algae mass and medium are separated by a specially designed harvester. (4) Cultivation conditions, such as pH, temperature, algae growth rate, light intensity and quantity of generated oxygen gas are controlled by a computer system and the data are automatically recorded. This equipment is a primary model for ground experiments in order to obtain some design data for space use. A feasibility of algae cultivation in a closed condition is discussed on the basis of data obtained by use of this new system.  相似文献   

17.
A systems design study group jointly sponsored by the American Society for Engineering Education, Stanford University and NASA's Ames Research Center, was requested to develop a design for an orbiting quarantine facility. The proposed facility is constructed of Spacelab shells formed into five modules of different sizes, each compatible with missions of other objectives. Once placed in a low Earth orbit by the Space Shuttle, each component is linked via the international docking system. Radiating from the docking module are a replaceable logistics module which stores a thirty day supply of consumables and waste, a module providing living quarters for five crew members, a power system module, and a quarantine testing laboratory. Within the laboratory module is a primary barrier system of sealed cabinets in which the sample is assessed for life forms. These chambers isolate the sample from terrestrial contamination and protect the researchers. A combination of procedures and mechanisms separates the laboratory module from the remainder of the facility and provides a secondary barrier. The conditions of space provide a tertiary barrier protecting the Earth's biosphere.  相似文献   

18.
同步定位与地图构建(SLAM)是视觉导航领域的关键技术之一,闭环检测是SLAM的基础问题。针对视觉SLAM闭环检测准确率不高的问题,提出一种高效准确的闭环检测算法。该算法由词袋模型、图像结构校验、跟踪预测模型3个模块构成。首先,将局部特征与全局特征相结合,设计了词袋模型与图像结构校验模块。词袋模型通过视觉单词比较图像之间的相似性,得到闭环候选帧。然后,图像结构校验模块灰度化、归一化当前图像与闭环候选图像。归一化之后的图像被直接作为局部特征的邻域,计算得到全局描述符,通过全局描述符判断闭环候选帧是否为有效的闭环。最后,针对传统闭环检测算法耗时随图像数量增加而显著增加的问题,设计了跟踪预测模块,以提高计算效率。实验中,与主流的DBoW算法相比,提出的闭环检测算法的准确率提升了20%以上,实时性也有更好的表现。   相似文献   

19.
针对量子科学实验、时频传递实验等项目研发的先进载荷对微振动频谱积分的特殊指标需求,研究一种分离式主动隔振技术。分离式隔振技术将卫星划分为载荷模块和服务模块,考虑两模块之间柔性连接线缆和限位弹簧,首先建立两模块的动力学模型。随后,设计基于加速度反馈的六自由度隔振控制器,考虑执行机构控制和驱动电路的电气噪音,在时域和频域仿真分析载荷模块对服务模块的振动隔离性能。仿真结果表明,主动隔振后载荷模块三轴加速度功率谱密度在05~200Hz内积分值小于2 μgn。最后,分析主动隔振控制器参数对载荷模块加速度功率谱积分指标的影响。分离式主动隔振可为我国超静科学卫星的振动隔离提供一种技术途径。  相似文献   

20.
载人航天器生活舱内热湿环境的数值模拟   总被引:3,自引:1,他引:2  
文章给出了载人航天器生活舱传热传质的数学模型及边界条件 ,对微分控制方程运用基于有限元网格的控制容积法来离散 ,对离散后的代数方程使用欠松弛的高斯 -塞德尔(G -S)迭代法求解 ,最终得到了舱内流场、温湿度场的数值分析结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号