首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 486 毫秒
1.
Atmospheric Escape and Evolution of Terrestrial Planets and Satellites   总被引:1,自引:1,他引:0  
The origin and evolution of Venus’, Earth’s, Mars’ and Titan’s atmospheres are discussed from the time when the active young Sun arrived at the Zero-Age-Main-Sequence. We show that the high EUV flux of the young Sun, depending on the thermospheric composition, the amount of IR-coolers and the mass and size of the planet, could have been responsible that hydrostatic equilibrium was not always maintained and hydrodynamic flow and expansion of the upper atmosphere resulting in adiabatic cooling of the exobase temperature could develop. Furthermore, thermal and various nonthermal atmospheric escape processes influenced the evolution and isotope fractionation of the atmospheres and water inventories of the terrestrial planets and Saturn’s large satellite Titan efficiently.  相似文献   

2.
Because the solar radiation and particle environment plays a major role in all atmospheric processes such as ionization, dissociation, heating of the upper atmospheres, and thermal and non-thermal atmospheric loss processes, the long-time evolution of planetary atmospheres and their water inventories can only be understood within the context of the evolving Sun. We compare the effect of solar induced X-ray and EUV (XUV) heating on the upper atmospheres of Earth, Venus and Mars since the time when the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) about 4.6 Gyr ago. We apply a diffusive-gravitational equilibrium and thermal balance model for studying heating of the early thermospheres by photodissociation and ionization processes, due to exothermic chemical reactions and cooling by IR-radiating molecules like CO2, NO, OH, etc. Our model simulations result in extended thermospheres for early Earth, Venus and Mars. The exospheric temperatures obtained for all the three planets during this time period lead to diffusion-limited hydrodynamic escape of atomic hydrogen and high Jeans’ escape rates for heavier species like H2, He, C, N, O, etc. The duration of this blow-off phase for atomic hydrogen depends essentially on the mixing ratios of CO2, N2 and H2O in the atmospheres and could last from ∼100 to several hundred million years. Furthermore, we study the efficiency of various non-thermal atmospheric loss processes on Venus and Mars and investigate the possible protecting effect of the early martian magnetosphere against solar wind induced ion pick up erosion. We find that the early martian magnetic field could decrease the ion-related non-thermal escape rates by a great amount. It is possible that non-magnetized early Mars could have lost its whole atmosphere due to the combined effect of its extended upper atmosphere and a dense solar wind plasma flow of the young Sun during about 200 Myr after the Sun arrived at the ZAMS. Depending on the solar wind parameters, our model simulations for early Venus show that ion pick up by strong solar wind from a non-magnetized planet could erode up to an equivalent amount of ∼250 bar of O+ ions during the first several hundred million years. This accumulated loss corresponds to an equivalent mass of ∼1 terrestrial ocean (TO (1 TO ∼1.39×1024 g or expressed as partial pressure, about 265 bar, which corresponds to ∼2900 m average depth)). Finally, we discuss and compare our findings with the results of preceding studies.  相似文献   

3.
We review the geochemical observations of water, \(\mbox{D}/\mbox{H}\) and volatile element abundances of the inner Solar System bodies, Mercury, Venus, the Moon, and Mars. We focus primarily on the inventories of water in these bodies, but also consider other volatiles when they can inform us about water. For Mercury, we have no data for internal water, but the reducing nature of the surface of Mercury would suggest that some hydrogen may be retained in its core. We evaluate the current knowledge and understanding of venusian water and volatiles and conclude that the venusian mantle was likely endowed with as much water as Earth of which it retains a small but non-negligible fraction. Estimates of the abundance of the Moon’s internal water vary from Earth-like to one to two orders of magnitude more depleted. Cl, K, and Zn isotope anomalies for lunar samples argue that the giant impact left a unique geochemical fingerprint on the Moon, but not the Earth. For Mars, an early magma ocean likely generated a thick crust; this combined with a lack of crustal recycling mechanisms would have led to early isolation of the Martian mantle from later delivery of water and volatiles from surface reservoirs or late accretion. The abundance estimates of Martian mantle water are similar to those of the terrestrial mantle, suggesting some similarities in the water and volatile inventories for the terrestrial planets and the Moon.  相似文献   

4.
In planetary atmospheres the nature of the aerosols varies, as does the relative importance of different sources of ion production. The nature of the aerosol and ion production is briefly reviewed here for the atmospheres of Venus, Mars, Jupiter and Titan using the concepts established for the terrestrial atmosphere. Interactions between the ions formed and aerosols present cause (1) charge exchange, which can lead to substantial aerosol charge and (2) ion removal. Consequences of (1) are that (a) charged aerosol are more effectively removed by conducting liquid droplets than uncharged aerosol and (b) particle–particle coagulation rates are modified, influencing particle residence times in the relevant atmosphere. Consequences of (2) are that ions are removed in regions with abundant aerosol, which may preclude charge flow in an atmosphere, such as that associated with an atmospheric electrical circuit. In general, charge should be included in microphysical modeling of the properties of planetary aerosols.  相似文献   

5.
Becker  R.H.  Clayton  R.N.  Galimov  E.M.  Lammer  H.  Marty  B.  Pepin  R.O.  Wieler  R. 《Space Science Reviews》2003,106(1-4):377-410
Variations in the isotopic ratios of volatile elements in different reservoirs on the terrestrial planets carry information about processes that operated on the planets since their formation. Comparisons between primordial planetary compositions, to the extent they can be determined, may help us understand the planetary formation process. This working group report summarizes our knowledge of terrestrial planet volatile inventories. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The near absence of noble gases on earth, other than those of radioactive origin, indicates that the earth was formed by the accumulation of planetesimals; this process systematically excluded all constituents that did not enter into the solid phase. The atmosphere and the ocean with many of its dissolved salts have arisen from gases emitted from the earth's interior, a process that continues today. The oxygen in the earth's atmosphere plus a greater quantity that has been removed from the atmosphere to oxidize geologic materials, has arisen mainly from a small excess of photosynthesis over decay of organic material. The atmospheres of Mars and Venus have probably arisen in a manner similar to the atmosphere on earth, by emission from the planetary interiors. However, they have not received any oxygen from photosynthesis and so are nearly oxygen free. Mars has very little water in its atmosphere, and this can be explained by its lower than freezing average surface temperature. Venus also has very little water, and this requires an ad hoc explanation; one possibility is that Venus was formed from much drier planetesimals than was the earth. Mercury and the moon are virtually without atmospheres. Although some gases may be emitted from their interiors, they are presumably rapidly lost by escape. Whatever atmosphere they possess is probably due to the neutralized solar wind that impinges upon them. The outer planets retained volatiles, including hydrogen and helium, to a much greater extent than did the terrestrial planets.  相似文献   

7.
Metallic ions coming from the ablation of extraterrestrial dust, play a significant role in the distribution of ions in the Earth’s ionosphere. Ions of magnesium and iron, and to a lesser extent, sodium, aluminium, calcium and nickel, are a permanent feature of the lower E-region. The presence of interplanetary dust at long distances from the Sun has been confirmed by the measurements obtained by several spacecrafts. As on Earth, the flux of interplanetary meteoroids can affect the ionospheric structure of other planets. The electron density of many planets show multiple narrow layers below the main ionospheric peak which are similar, in magnitude, to the upper ones. These layers could be due to long-lived metallic ions supplied by interplanetary dust and/or their satellites. In the case of Mars, the presence of a non-permanent ionospheric layer at altitudes ranging from 65 to 110 km has been confirmed and the ion Mg+?CO2 identified. Here we present a review of the present status of observed low ionospheric layers in Venus, Mars, Jupiter, Saturn and Neptune together with meteoroid based models to explain the observations. Meteoroids could also affect the ionospheric structure of Titan, the largest Saturnian moon, and produce an ionospheric layer at around 700 km that could be investigated by Cassini.  相似文献   

8.
The solar wind and the solar XUV/EUV radiation constitute a permanent forcing of the upper atmosphere of the planets in our solar system, thereby affecting the habitability and chances for life to emerge on a planet. The forcing is essentially inversely proportional to the square of the distance to the Sun and, therefore, is most important for the innermost planets in our solar system—the Earth-like planets. The effect of these two forcing terms is to ionize, heat, chemically modify, and slowly erode the upper atmosphere throughout the lifetime of a planet. The closer to the Sun, the more efficient are these process. Atmospheric erosion is due to thermal and non-thermal escape. Gravity constitutes the major protection mechanism for thermal escape, while the non-thermal escape caused by the ionizing X-rays and EUV radiation and the solar wind require other means of protection. Ionospheric plasma energization and ion pickup represent two categories of non-thermal escape processes that may bring matter up to high velocities, well beyond escape velocity. These energization processes have now been studied by a number of plasma instruments orbiting Earth, Mars, and Venus for decades. Plasma measurement results therefore constitute the most useful empirical data basis for the subject under discussion. This does not imply that ionospheric plasma energization and ion pickup are the main processes for the atmospheric escape, but they remain processes that can be most easily tested against empirical data. Shielding the upper atmosphere of a planet against solar XUV, EUV, and solar wind forcing requires strong gravity and a strong intrinsic dipole magnetic field. For instance, the strong dipole magnetic field of the Earth provides a “magnetic umbrella”, fending of the solar wind at a distance of 10 Earth radii. Conversely, the lack of a strong intrinsic magnetic field at Mars and Venus means that the solar wind has more direct access to their topside atmosphere, the reason that Mars and Venus, planets lacking strong intrinsic magnetic fields, have so much less water than the Earth? Climatologic and atmospheric loss process over evolutionary timescales of planetary atmospheres can only be understood if one considers the fact that the radiation and plasma environment of the Sun has changed substantially with time. Standard stellar evolutionary models indicate that the Sun after its arrival at the Zero-Age Main Sequence (ZAMS) 4.5 Gyr ago had a total luminosity of ≈70% of the present Sun. This should have led to a much cooler Earth in the past, while geological and fossil evidence indicate otherwise. In addition, observations by various satellites and studies of solar proxies (Sun-like stars with different age) indicate that the young Sun was rotating more than 10 times its present rate and had correspondingly strong dynamo-driven high-energy emissions which resulted in strong X-ray and extreme ultraviolet (XUV) emissions, up to several 100 times stronger than the present Sun. Further, evidence of a much denser early solar wind and the mass loss rate of the young Sun can be determined from collision of ionized stellar winds of the solar proxies, with the partially ionized gas in the interstellar medium. Empirical correlations of stellar mass loss rates with X-ray surface flux values allows one to estimate the solar wind mass flux at earlier times, when the solar wind may have been more than 1000 times more massive. The main conclusions drawn on basis of the Sun-in-time-, and a time-dependent model of plasma energization/escape is that:
  1. Solar forcing is effective in removing volatiles, primarily water, from planets,
  2. planets orbiting close to the early Sun were subject to a heavy loss of water, the effect being most profound for Venus and Mars, and
  3. a persistent planetary magnetic field, like the Earth’s dipole field, provides a shield against solar wind scavenging.
  相似文献   

9.
Xenon plays a crucial role in models of atmospheric evolution in which noble gases are fractionated from their initial compositions to isotopically heavier distributions by early hydrodynamic escape of primordial planetary atmospheres. With the assumption that nonradiogenic Xe isotope ratios in present-day atmospheres were generated in this way, backward modeling from these ratios through the fractionating process can in principle identify likely parental Xe compositions and thus the probable sources of noble gases in pre-escape atmospheres. Applied to Earth, this approach simultaneously establishes the presence of an atmospheric Xe component due principally to fission of extinct 244Pu and identifies a composition called U-Xe as primordial Xe. Pu-Xe comprises 4.65±0.30% of atmospheric 136Xe, and 6.8±0.5% of the present abundance of 129Xe derives from decay of extinct 129I. U-Xe is identical to the measured composition of solar-wind Xe except for deficits of the two heaviest isotopes – an unexpected difference since the modeling otherwise points to solar wind compositions for the lighter noble gases in the primordial terrestrial atmosphere. Evidence for the presence of U-Xe is not restricted to the early Earth; modeling based on a purely meteoritic data set defines a parental component in chondrites and achondrites with the same isotopic distribution. Results of experimental efforts to measure this composition directly in meteorites are promising but not yet conclusive. U-Xe also appears as a possible base component in interstellar silicon carbide, here with superimposed excesses of 134Xe and 136Xe six-fold larger than those in the solar wind. These compositional differences imply mixing of U-Xe with a nucleogenetic heavy-isotope component whose relative abundance in the solar accretion disk and in pre-solar environments varied both spatially and temporally. In contrast to Earth, the U-Xe signature on Mars was apparently overwhelmed by local accretion of materials rich in either chondritic Xe or solar-wind Xe. Data currently in hand from SNC meteorites on the composition of the present atmosphere are insufficiently precise to constrain a modeling choice between these two candidates for primordial martian Xe. They likewise do not permit definitive resolution of a 244Pu component in the atmosphere although its presence is allowed within current measurement uncertainties. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   

11.
As both Earth and Mars have had similar environmental conditions at least for some extended time early in their history (Jakosky and Phillips in Nature 412:237–244, 2001), the intriguing question arises whether life originated and evolved on Mars as it did on Earth (McKay and Stoker in Rev. Geophys. 27:189–214, 1989). Conceivably, early autotrophic life on Mars, like early life on Earth, used irreversible enzymatically enhanced metabolic processes that would have fractionated stable isotopes of the elements C, N, S, and Fe. Several important assumptions are made when such isotope fractionations are used as a biomarker. The purpose of this article is two-fold: (1) to discuss these assumptions for the case of carbon and to summarize new insights in abiologic reactions, and (2) to discuss the use of other stable isotope systems as a potential biomarker. It is concluded that isotopic biomarker studies on Mars will encounter several important obstacles. In the case of carbon isotopes, the most important obstacle is the absence of a contemporary abiologic carbon reservoir (such as carbonate deposits on Earth) to act as isotopic standard. The presence of a contemporary abiologic sulfate reservoir (evaporite deposits) suggests that sulfur isotopes can be used as a potential biomarker for sulfate-reducing bacteria. The best approach for tracing ancient life on Mars will be to combine several biomarker approaches; to search for complexity, and to combine small-scale isotopic variations with chemical, mineralogical, and morphological observations. An example of such a study can be a layer-specific correlation between δ 13C and δ 34S within an ancient Martian evaporite, which morphologically resembles the typical setting of a shallow marine microbial mat.  相似文献   

12.
Titan has the most significant atmosphere of any moon in the solar system, with a pressure at the surface larger than the Earth??s. It also has a significant ionosphere, which is usually immersed in Saturn??s magnetosphere. Occasionally it exits into Saturn??s magnetosheath. In this paper we review several recent advances in our understanding of Titan??s ionosphere, and present some comparisons with the other unmagnetized objects Mars and Venus. We present aspects of the ionospheric structure, chemistry, electrodynamic coupling and transport processes. We also review observations of ionospheric photoelectrons at Titan, Mars and Venus. Where appropriate, we mention the effects on ionospheric escape.  相似文献   

13.
Carbon isotope ratios have been measured for CN in the coma of comet Halley and for several CHON particles emitted by Halley. Of these, only the CHON-particle data may be reasonably related to organic matter in the cometary nucleus, but the true range of 13C/12C values in those particles is quite uncertain. The D/H ratio in H2O in the Halley coma resembles that in Titan/Uranus. The next decade should substantially improve our understanding of the distribution of C, H, N, and O isotopes in cometary organics. The isotopic composition of meteoritic organic matter is better understood and can serve as a useful analog for the cometary case.  相似文献   

14.
The oxygen isotope systematics in planetary and nebular matter are used to constrain the types of nebular material accreted to form a planet. The basic assumption of this model is that the mean oxygen isotopic composition of a planet is determined by the weighted mean oxygen isotopic composition of nebular matter accreted by the planet. Chondrites are taken as representatives of nebular matter. The chemical composition (which determines core size, mantle oxidation state, density, moment of inertia) of a planet results from the weighted mean compositions of the accreted nebular material, once the mass fractions of the different types of accreting matter are known. Here some results for Earth, Moon, Mars, and Vesta are discussed. The model implies that loss of volatile elements, such as alkalis and halogens, occurs during accretion and early planetary differentiation (e. g., by catastrophic impacts). The possible depletion mechanisms of moderately volatile elements are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Our understanding of the upper atmosphere of unmagnetized bodies such as Mars, Venus and Titan has improved significantly in this decade. Recent observations by in situ and remote sensing instruments on board Mars Express, Venus Express and Cassini have revealed characteristics of the neutral upper atmospheres (exospheres) and of energetic neutral atoms (ENAs). The ENA environment in the vicinity of the bodies is by itself a significant study field, but ENAs are also used as a diagnostic tool for the exosphere and the interaction with the upstream plasmas. Synergy between theoretical and modeling work has also improved considerably. In this review, we summarize the recent progress of our understanding of the neutral environment in the vicinity of unmagnetized planets.  相似文献   

16.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   

17.
Mars and Venus do not have a global magnetic field and as a result solar wind interacts directly with their ionospheres and upper atmospheres. Neutral atoms ionized by solar UV, charge exchange and electron impact, are extracted and scavenged by solar wind providing a significant loss of planetary volatiles. There are different channels and routes through which the ionized planetary matter escapes from the planets. Processes of ion energization driven by direct solar wind forcing and their escape are intimately related. Forces responsible for ion energization in different channels are different and, correspondingly, the effectiveness of escape is also different. Classification of the energization processes and escape channels on Mars and Venus and also their variability with solar wind parameters is the main topic of our review. We will distinguish between classical pickup and ??mass-loaded?? pickup processes, energization in boundary layer and plasma sheet, polar winds on unmagnetized planets with magnetized ionospheres and enhanced escape flows from localized auroral regions in the regions filled by strong crustal magnetic fields.  相似文献   

18.
Most of our knowledge regarding planetary atmospheric composition and structure has been achieved by remote sensing spectroscopy. Planetary spectra strongly differ from one planet to another. CO2 signatures dominate on Mars, and even more on Venus (where the thermal component is detectable down to 1 μm on the dark side). Spectroscopic monitoring of Venus, Earth and Mars allows us to map temperature fields, wind fields, clouds, aerosols, surface mineralogy (in the case of the Earth and Mars), and to study the planets’ seasonal cycles. Spectra of giant planets are dominated by H2, CH4 and other hydrocarbons, NH3, PH3 and traces of other minor compounds like CO, H2O and CO2. Measurements of the atmospheric composition of giant planets have been used to constrain their formation scenario.  相似文献   

19.
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at  相似文献   

20.
The occurrence of waves generated by pick-up of planetary neutrals by the solar wind around unmagnetized planets is an important indicator for the composition and evolution of planetary atmospheres. For Venus and Mars, long-term observations of the upstream magnetic field are now available and proton cyclotron waves have been reported by several spacecraft. Observations of these left-hand polarized waves at the local proton cyclotron frequency in the spacecraft frame are reviewed for their specific properties, generation mechanisms and consequences for the planetary exosphere. Comparison of the reported observations leads to a similar general wave occurrence at both planets, at comparable locations with respect to the planet. However, the waves at Mars are observed more frequently and for long durations of several hours; the cyclotron wave properties are more pronounced, with larger amplitudes, stronger left-hand polarization and higher coherence than at Venus. The geometrical configuration of the interplanetary magnetic field with respect to the solar wind velocity and the relative density of upstream pick-up protons to the background plasma are important parameters for wave generation. At Venus, where the relative exospheric pick-up ion density is low, wave generation was found to mainly take place under stable and quasi-parallel conditions of the magnetic field and the solar wind velocity. This is in agreement with theory, which predicts fast wave growth from the ion/ion beam instability under quasi-parallel conditions already for low relative pick-up ion density. At Mars, where the relative exospheric pick-up ion density is higher, upstream wave generation may also take place under stable conditions when the solar wind velocity and magnetic field are quasi-perpendicular. At both planets, the altitudes where upstream proton cyclotron waves were observed (8 Venus and 11 Mars radii) are comparable in terms of the bow shock nose distance of the planet, i.e. in terms of the size of the solar wind-planetary atmosphere interaction region. In summary, the upstream proton cyclotron wave observations demonstrate the strong similarity in the interaction of the outer exosphere of these unmagnetized planets with the solar wind upstream of the planetary bow shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号