首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对高精度测速系统在优化设备时取消探空气象测量的要求,提出用统计大气折射率剖面分段模型代替探空测量剖面,并在此基础上建立了基于分段模型的测速雷达电波折射误差修正方法。利用某测站历史气象数据对该方法进行了验证,结果表明精度较高,基本上能够满足测速雷达数据处理电波折射修正的精度要求。  相似文献   

2.
电波折射误差实时修正方法研究   总被引:1,自引:0,他引:1  
目前的实时弹道处理过程中,由于获得探空气象数据比较困难,电波折射误差均采用各种简化方法进行计算,因而大气折射误差计算的精度不高,修正效果不佳。针对这种现状,本文提出了基于双指数模型的射线瞄迹法计算大气折射误差。试算结果表明,该方法的计算精度与事后数据处理所采用的电波折射误差修正方法相当,且能够满足实时处理的时间要求。  相似文献   

3.
电波折射误差实时修正的公式拟合方法   总被引:3,自引:0,他引:3  
在实际工程应用中,为了提高雷达测量精度,电波折射误差的修正主要采用实时修正方法。本文给出了电波折射误差实时修正的公式拟合方法,该方法在实际应用中能够快速得到折射误差,从而提高了雷达测量精度。  相似文献   

4.
针对电波折射修正精度直接影响无线电系统的探测和定位精度这一问题,提出了利用微波辐射计反演大气折射率剖面进行电波折射修正的解决方法,并引入RBF(Radial Basis Function,径向基)神经网络算法反演大气折射率.在青岛市气象局架设MP-3000A型多通道微波辐射计,开展了长达1个月的与探空数据的联合观测比对实验,对输出的大气折射率剖面进行了详细的分析.实验结果表明:RBF神经网络算法与MP-3000A自带的神经网络算法相比,反演大气折射率剖面的精度提高了30%以上,同时,电波折射修正的精度也得以提高.因此,利用微波辐射计反演大气折射率剖面进行电波折射修正方法可行.  相似文献   

5.
针对测量船精度鉴定中电波折射经验模型修正精度较差的问题,在双指数大气折射率模型的基础上,通过对测量船历次任务的100多次探空气象数据进行处理,回归分析得到干项和湿项特征高度与海平面气象参数的关系式。试算结果表明:基于该模型用射线描迹法计算折射修正量,其计算精度与事后数据处理采用的计算方法相当,距离、仰角修正后的最大残余误差约为3%,满足了测量船在三大洋任意海域的精度鉴定需求。  相似文献   

6.
对于大气水平不均匀性较大的地区,用59型探空仪测量大气剖面,然后用大气球面分层法计算电波折射误差,其精度不会太高。本文提出了用微波辐射计直接测量电波传播路径上大气辐射亮度温度而得到电波折射修正量的方法——辐射计法。由于辐射计法是直接在电波传播路径上进行测量,直接反应大气的空间结构和时变特性,并且不需要施放探空仪,具有方便、灵活、实时、全天候和修正精度高等优点,因此是一种非常实用的高精度电波折射修正方法。  相似文献   

7.
针对对流层引起的航天器外测数据折射误差,基于对流层分段模型,以测站历史气象数据拟合折射衰减系数,建立测控站上空对流层折射率模型,并利用实测地面折射率对统计模型进行优化,进一步提高模型反映大气剖面的真实性.利用该模型对S频段多颗在轨卫星50多跟踪圈次的实测外测数据进行修正分析,并与微波辐射计实时修正结果进行比较,测距、测角、测速互差分别优于0.9m、0.02°、0.06 m/s.将该模型应用于卫星长管外测数据的实时修正,可提高轨道测量数据质量.  相似文献   

8.
USB测量系统是我国航天测控网的主体设备,其距离变化率测元R由于目前条件限制,未能对电波折射误差进行修正,因而影响了它的测量精度。本文根据USB系统R的测量原理以及数据获取和处理的方法,在现有气象探测务件下,提供一种关于R的电波折射简化修正方法,这样可以修正电波折射的部分误差,从而改进R的测量精度,也为航天器的定轨精度提高提供条件。  相似文献   

9.
针对现有对流层大气折射模型在特定地区适应性不强的问题,基于电波大气折射效应原理及经典大气模型,分析了对流层大气折射误差估计模型及其投影函数,用历史气象数据分析了某地区气候特点,证明了修正模型在该地区应用的可行性。然后,利用多项式拟合方法得到了深空站地区大气折射统计模型,利用非线性回归方法得到了深空站地区大气折射修正量的解析近似模型。最后,用实测数据对以上两个修正模型进行了试验验证。验证结果表明,统计模型稳定可靠,解析近似模型测量精度高,能够满足不同条件下深空测控及VLBI观测中电波折射修正的需求。  相似文献   

10.
电波折射修正公式中积分项的处理方法研究   总被引:3,自引:0,他引:3  
分析了电波折射修正公式中积分项的数值处理方法,比较了所用累加∑法和Gauss-Legendre法的实用范围和优缺点。结果表明,高精度电波折射修正中对积分项进行处理时,采用Gauss-Legendre法进行积分计算有利于修正精度。  相似文献   

11.
对于大气水平不均匀性较大的地区,用59型探空仪测量大气剖面,然后用大气球面分层法计算电波折射误差,其精度不会太高。本文提出了用微波辐射计直接测量电波传播路径上大气射亮度温度而得到电波折射正量的方法-辐射计法。由于辐射计法是直接在电波传播路径上进行测量,直接反应大气的空间结构和时变特性,并且不需要施放探空仪,具有方便、灵活、实时、全天候和修正精度高等优点,因此是一种非常实用的高精度电波折射修正方法。  相似文献   

12.
航天工程任务对航天器外弹道测量数据的精度需求不断提高,电离层折射误差已成为影响航天高精度测量的主要误差源之一。目前国际上基于多种观测数据建立了多种电离层模型,由于模型使用的数据和算法不同而有不同的修正精度。通过分析国内外常用的Klobuchar(克罗布歇)模型、国际参考电离层模型和中国参考电离层模型的特点,利用3个电离层模型对S频段多颗在轨卫星50多跟踪圈次的实测外测数据进行修正,以星载GPS(Global Positioning System,全球定位系统)数据获取的精密星历经过坐标变换、测站与卫星的几何关系计算可得到测站到卫星的距离,将其作为标准值,采用微波辐射计修正对流层折射误差后对3个电离层模型的修正结果进行比较检验,结果表明中国参考电离层模型在中国区域的修正结果优于其他2个模型,可为航天测控实时修正提供参考。  相似文献   

13.
提高电波折射修正精度的关键是获取精确的大气剖面。本文分析了几种获取大气剖面的方法及误差。结果表明,用综合法获取的大气剖面误差较小,更适用于高精度电波折射修正。  相似文献   

14.
针对在交会对接任务中测量船使用的电波折射经验模型存在低仰角跟踪测量修正精度差的问题提出改进思路,在模型中引入基于天顶延迟的拟合算法优化修正模型,提高了船载雷达低仰角跟踪时距离的修正精度,满足了测量船数据处理的精度需求。用新方法处理数据,计算的轨道根数半长轴外符合误差平均降低了605m,有效提高了测量船定轨精度。  相似文献   

15.
本文提出了使用连续波雷达测速信息直接求速的方法。该方法根据测速信息的物理意义及线性估计理论,给出了关于测量量的直接估式、估式的近似处理及误差分析。还给出了相应的电波折射修正方法。由于该方法不使用多普勒频率,与定位系统一样,都以广泛应用的测量量为数据处理的基本参数,使连续波雷达数据处理过程更加清晰、实施更加简便、理论更加严格。实践表明该方法是可行的、有效的,较多普勒频率求速法优越。  相似文献   

16.
本文利用局部气象参数进行了电波折射修正分析,做了一些有益的尝试,并根据实测数据进行了效果分析,获取了可信的效果。  相似文献   

17.
装载直收式GPS信号(C/A、L_1)接收机,可以确定地表或空中运动目标的位置和速度。为了改进测量精度,本文推导和研究了一套R_c、R_c的精确电波折射修正方法。它采用被测目标空域的实测大气折射参数进行修正,因而可提高修正的真实性和准确性。附录证明了R_c修正的几何意义。  相似文献   

18.
低仰角大气折射修正的新方法   总被引:1,自引:0,他引:1  
常规的大气折射修正方法都作了大气折射率水平均匀分布的假定,只适用于仰角较高(5°以上)的情况。本文给出了适用范围广、修正精度高的低仰角大气折射修正的新方法,并利用验证试验和以往试验任务的实测数据,对该方法的修正效果进行检验。  相似文献   

19.
大气折射修正残差初探   总被引:1,自引:0,他引:1  
一、前言随着无线电测量设备的不断发展,目标测量精度的不断提高,对电波折射修正也提出了更高的要求。一方面要求提供高精度修正公式,另一方面要求给出修正后的剩余误差大小。我们知道,影响电波折射修正精度的因素很多。但总起来不外乎有以下几个主要方面。公式假设误差在现用的电波折射修正公式中,均作了大气是水平均匀的假设,认为大气是球面分层,而实际上大气结构是水平不均匀的。不均匀的情况又由于不同的下垫面及气流有所不同。如陆海交界,山川起伏区大气水平不均匀性就比平坦的沙漠来得大。大气在  相似文献   

20.
由于大气压强、温度、湿度分布的不均匀性,使光线在大气中的传播发生弯曲,产生大气折射现象。大气折射对光学观测产生不可忽略的影响,需进行大气折射修正。当观测仰角为负且绝对值较小时,光轨迹曲线将出现极值点。这时,通常所用的积分修正方法无法使用,因而负仰角观测的大气折射修正计算成了难题。本文提出了分段计算、切线递推公式、测站至目标间地心角和视在高度计算等新计算法,从而较好地解决了负仰角(特别是小负仰角)观测的大气折射修正计算问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号