首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The search for organic molecules at the surface of Mars is a top priority of the next Mars exploration space missions: Mars Science Laboratory (NASA) and ExoMars (ESA). The detection of organic matter could provide information about the presence of a prebiotic chemistry or even biological activity on this planet. Therefore, a key step in interpretation of future data collected by these missions is to understand the preservation of organic matter in the martian environment. Several laboratory experiments have been devoted to quantifying and qualifying the evolution of organic molecules under simulated environmental conditions of Mars. However, these laboratory simulations are limited, and one major constraint is the reproduction of the UV spectrum that reaches the surface of Mars. As part of the PROCESS experiment of the European EXPOSE-E mission on board the International Space Station, a study was performed on the photodegradation of organics under filtered extraterrestrial solar electromagnetic radiation that mimics Mars-like surface UV radiation conditions. Glycine, serine, phthalic acid, phthalic acid in the presence of a mineral phase, and mellitic acid were exposed to these conditions for 1.5 years, and their evolution was determined by Fourier transform infrared spectroscopy after their retrieval. The results were compared with data from laboratory experiments. A 1.5-year exposure to Mars-like surface UV radiation conditions in space resulted in complete degradation of the organic compounds. Half-lives between 50 and 150?h for martian surface conditions were calculated from both laboratory and low-Earth orbit experiments. The results highlight that none of those organics are stable under low-Earth orbit solar UV radiation conditions.  相似文献   

2.
Titan, the largest satellite of Saturn, has a dense N2-CH4 atmosphere rich in organic compounds, both in gas and in aerosol phases. Its surface is probably covered by oceans of liquid methane-ethane mixtures, with many dissolved organics. This quasi planet appears as a natural laboratory to study chemical evolution toward complex organic systems in a planetary environment over a long time scale. With the Cassini-Huygens mission NASA and ESA will jointly send an orbiter (Cassini) around Saturn and a probe (Huygens) in the atmosphere of Titan. This mission, currently planned to be launched in 1996-1997 for a Saturn - Titan arrival in 2004, offers a unique opportunity to study in detail extra-terrestrial organic processes. Consequently, it has important implications in the field of exobiology and the origins of life.  相似文献   

3.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

4.
Analysing Interferometer for Ambient Air (ANITA) is a flight experiment as precursor for a permanent continuous trace gas monitoring system on the International Space Station (ISS). For over 10 years, under various ESA contracts the flight experiment was defined, designed, breadboarded and set up. For the safety of the crew, ANITA can detect and quantify quasi on-line and simultaneously 32 trace gases with ppm or sub-ppm detection limits. The self-standing measurement system is based on Fourier Transform Infrared Spectrometer (FTIR) technology. The system represents a versatile air monitor allowing for the first time the detection and monitoring of trace gas dynamics of a spacecraft atmosphere. It is envisaged to accommodate ANITA in a Destiny (US LAB) Express Rack on the ISS. The transportation to the ISS is planned with the first ATV 'Jules Verne'. The options are either the Space Shuttle or the Automated Transfer Vehicle.  相似文献   

5.
Doetsch K 《Acta Astronautica》2005,57(2-8):661-675
The paper addresses the evolution of the Canadian Space Station Program between 1981 and 2003. Discussions with potential international partners, aimed at jointly developing the current International Space Station program, were initiated by NASA in 1982. Canada chose, through the further development of the technologies of Canadarm on the space shuttle, to provide and operate an advanced and comprehensive external robotics system for space station, and to use the space station for scientific and commercial purposes. The program was to become a corner-stone of the new Canadian Space Agency. The development phase of the Canadian Space Station Program has been completed and two of the three major elements are currently operational in space.  相似文献   

6.
Although NASA's Space Shuttle is largely dedicated in the near term to Space Station assembly, 10–16 day flight opportunities still abound for spacecraft technology demonstration payloads, and experiments for the established earth and space science communities. This paper will present the latest developments of SPACEHAB flight systems in order to accommodate the flight needs of these communities on the Space Shuttle today and the Space Station tomorrow. In particular, some examples of payloads from these disciplines will be introduced together with the accommodation and experiment objectives.  相似文献   

7.
Macromolecules derived from hydrogen cyanide (HCN) may be major components of the dark matter observed in bodies in the outer Solar System, which include comets and asteroids. HCN oligomers and polymers are readily formed at room temperature and react with water to produce polypeptides and alpha-amino acids or undergo pyrolysis to produce nitrogen heterocycles. Electron spin resonance (ESR) spectroscopy shows that HCN polymer mixtures contain a significant amount of long-lived organic free radicals that are primarily carbon-based. For comparison, we have also examined samples of tholins produced from experimental analogs of Titan aerosols, which has been shown by trace organic analysis to consist partly of HCN polymer. The "Titan tholin" exhibits at least two ESR signals that can be assigned to nitrogen- and carbon-centered radicals, although heating the sample eliminates the nitrogen centers and increases the signal from the carbon centers. This result suggests that the nitrogen-centered radicals may be thermodynamically less stable, but are kinetically trapped during the spark-discharge reactions that produce tholins from mixtures of gases such as methane and nitrogen. The results strongly support previous proposals of free radical mechanisms for HCN polymerization.  相似文献   

8.
Canada and the International Space Station program: overview and status   总被引:4,自引:0,他引:4  
Gibbs G  Sachdev S 《Acta Astronautica》2002,51(1-9):591-600
The twelve months since IAF 2000 have been perhaps the most exciting, challenging and rewarding months for Canada since the beginning of our participation in the International Space Station program in 1984. The highlight was the successful launch, on-orbit check out, and the first operational use of Canadarm2, the Space Station Remote Manipulator System, between April and July 2001. The anomalies encountered and the solutions found to achieve this success are described in the paper. The paper describes, also, the substantial progress that has been made, during the twelve months since IAF 2000, by Canada as it continues to complete work on all flight-elements of its contribution to the International Space Station and as we transition into real-time Space Station operations support and Canadian utilization. Canada's contribution to the International Space Station is the Mobile Servicing System (MSS), the external robotic system that is key to the successful assembly of the Space Station, the maintenance of its external systems, astronaut EVA support, and the servicing of external science payloads. The MSS ground segment that supports MSS operations, training, sustaining engineering, and logistics activities is reaching maturity. The MSS Engineering Support Center and the MSS Sustaining Engineering Facility are providing real-time support for on-orbit operations, and a Canadian Payloads Telescience Operations Center is now in place. Mission Controllers, astronauts and cosmonauts from all Space Station Partners continue to receive training at the Canadian Space Agency. The Remote Multi Purpose Room, one element of the MSS Operations Complex, will be ready to assume backroom support in 2002. Canada has completed work on identifying its Space Station utilization activities for the period 2000 through 2004. Also during the past twelve months the CSA drafted and is proceeding with the approval of a Canadian Space Station Commercialization Policy. Canadian astronauts have now participated in three ISS assembly missions--Julie Payette on STS-96, Marc Garneau on STS-97, and Chris Hadfield on STS-100 in April 2001 during which he performed Canada's first EVA and the successful installation of the Space Station Remote Manipulator System.  相似文献   

9.
With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by ultraviolet radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan's surface via biothermal energy.  相似文献   

10.
The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110?nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10?s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.  相似文献   

11.
《Acta Astronautica》2007,60(4-7):525-533
Cellular bioassays for detection of cyto- and genotoxicity are useful in the risk assessment of space environmental factors. Such bioassay systems have the potential complement the physical detector systems used in space, insofar as they yield intrinsically biologically weighted measures of cellular responses. The experiment Cellular Responses to Radiation in Space (CERASP) has been selected by NASA/ESA to be performed on the International Space Station. It will supply basic information on the cellular response to radiation applied in microgravity. One of the biological endpoints under investigation will be survival reflected by radiation-dependent reduction of constitutive expression of the enhanced variant of green fluorescent protein (EGFP), originally isolated from the bioluminescent jellyfish Aequorea victoria. In this ground based study, the usefulness of this approach in comparison to standard techniques (colony forming ability test, MTT test) is shown.  相似文献   

12.
Japan Aerospace Exploration Agency (JAXA) launched its own first manned experiment facility in space called the KIBO (Japanese Experiment Module, JEM) in 2008 and 2009 and started operations as part of International Space Station (ISS). To accomplish this Operation, JAXA made its own ground facility in Tsukuba, Japan, called Space Station Integration and Promotion Center (SSIPC). Ground personnel at SSIPC called the JEM Flight Control Team (JFCT) operate the KIBO and have learnt many lessons during its operation. In this presentation, some topics are chosen and explained such as (1) crew/ground personnel interaction and (2) planning lessons learned for manned space activities.  相似文献   

13.
The Microgravity Research Program (MRP) participated aggressively in Phase 1 of the International Space Station Program using the Russian Mir Space Station. The Mir Station offered an otherwise unavailable opportunity to explore the advantages and challenges of long duration microgravity space research. Payloads with both National Aeronautics and Space Agency (NASA) and commercial backing were included as well as cooperative research with the Canadian Space Agency (CSA). From this experience, much was learned about long-duration on-orbit science utilization and developing new working relationships with our Russian partner to promote efficient planning, operations, and integration to solve complexities associated with a multiple partner program.

This paper focuses on the microgravity research conducted onboard the Mir space station. It includes the Program preparation and planning necessary to support this type of cross increment research experience; the payloads which were flown; and summaries of significant microgravity science findings.  相似文献   


14.
《Acta Astronautica》2013,82(2):430-434
The urine protein composition samples of six Russian cosmonauts (male, aged 35–51) who performed long flight missions that varied from 169 to 199 days on the International Space Station (ISS) were analyzed using chromate-mass-spectrometric analysis. The direct shaping of samples was carried out with preliminary cleaning and the protein concentration from experiment participants urine was determined with the aid of MB-HIC C8 (“Bruker Daltonics”) magnetic particles set with the subsequent MALDI-TOF mass-spectrometric analysis on Autoflex III TOF/TOF (Bruker Daltonics) mass spectrometer operating in the positive linear mode. Also, the analysis of samples with the use of the method of precise mass markers and their elution time from the chromatographic column was done as well as further identification of proteins by MS–MS peptide spectrum based on the Mascot search system. The results of the implemented research made it possible to obtain new data necessary for genesis changes clarifying those which occur in the human organism under the action space flight factors.  相似文献   

15.
俄罗斯空间站推进剂补加程序分析   总被引:5,自引:0,他引:5  
江铭伟 《火箭推进》2013,39(4):8-12
补加程序是推进剂补加系统的关键技术之一,而目前也仅有俄罗斯有成功应用的经验.根据目前获取的资料,经过计算、仿真和论证,对俄罗斯空间站的补加系统进行了研究,分析了ATV对空间站进行推进剂补加的程序,初步得到了俄罗斯空间站推进剂补加的特点,可作为目前我国空间站方案论证期间补加程序的参考.  相似文献   

16.
Synchronized Position Hold Engage Reorient Experimental Satellites (SPHERES) is a formation flight testing facility consisting of three satellites operating inside the International Space Station (ISS). The goal is to use the long term microgravity environment of the ISS to mature formation flight and docking algorithms. The operations processes of SPHERES have also matured over the course of the first seven test sessions. This paper describes the evolution of the SPHERES program operations processes from conception to implementation to refinement through flight experience. Modifications to the operations processes were based on experience and feedback from Marshall Space Flight Center Payload Operations Center, USAF Space Test Program office at Johnson Space Center, and the crew of Expedition 13 (first to operate SPHERES on station). Important lessons learned were on aspects such as test session frequency, determination of session success, and contingency operations. This paper describes the tests sessions; then it details the lessons learned, the change in processes, and the impact on the outcome of later test sessions. SPHERES had very successful initial test sessions which allowed for modification and tailoring of the operations processes to streamline the code delivery and to tailor responses based on flight experiences.  相似文献   

17.
The proposed space experiments BOSS (Biofilm Organisms Surfing Space) and BIOMEX (BIOlogy and Mars experiment) will take place on the space exposure facility EXPOSE-R2 on the International Space Station (ISS), which is set to be launched in 2014. In BOSS the hypothesis to be tested is that microorganisms grown as biofilms, hence embedded in self-produced extracellular polymeric substances, are more tolerant to space and Martian conditions compared to their planktonic counterparts. Various microbial biofilms have been developed including those obtained from the cyanobacterium Chroococcidiopsis isolated from hot and cold deserts. The prime objective of BIOMEX is to evaluate to what extent biomolecules are resistant to, and can maintain their stability under, space and Mars-like conditions; therefore a variety of pigments and cell components are under investigation to establish a biosignature data base; e.g. a Raman spectral library to be used for extraterrestrial life biosignatures. The secondary objective of BIOMEX is to investigate the endurance of extremophiles, focusing on their interactions with Lunar and Martian mineral analogues. Ground-based studies are currently being carried out in the framework of EVTs (Experiment Verification Tests) by exposing selected organisms to space and Martian simulations. Results on a desert strain of Chroococcidiopsis obtained from the first set of EVT, e.g. space vacuum, Mars atmosphere, UVC radiation, temperature cycles and extremes, suggested that dried biofilms exhibited an enhanced survival compared to planktonic lifestyle. Moreover the protection provided by a Martian mineral analogue (S-MRS) to the sub-cellular integrities of Chroococcidiopsis against UVC radiation supports the endurance of this cyanobacterium under extraterrestrial conditions and its relevance in the development of life detection strategies.  相似文献   

18.
Dave Anderson 《Acta Astronautica》1999,44(7-12):593-606
To sustain the rate of extravehicular activity (EVA) required to assemble and maintain the International Space Station, we must enhance our ability to plan, train for, and execute EVAs. An underlying analysis capability has been developed to ensure EVA access to all external worksites as a starting point for ground training, to generate information needed for on-orbit training, and to react quickly to develop contingency EVA plans, techniques, and procedures. This paper describes the use of computer-based EVA worksite analysis techniques for EVA worksite design. EVA worksite analysis has been used to design 80% of EVA worksites on the U.S. portion of the International Space Station. With the launch of the first U.S. element of the station, EVA worksite analysis is being developed further to support real-time analysis of unplanned EVA operations. This paper describes this development and deployment of EVA worksite analysis for International Space Station (ISS) mission support.  相似文献   

19.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

20.
Scientists have conducted studies involving human spaceflight crews for over three decades. These studies have progressed from simple observations before and after each flight to sophisticated experiments during flights of several weeks up to several months. The findings from these experiments are available in the scientific literature. Management of these flight experiments has grown into a system fashioned from the Apollo Program style, focusing on budgeting, scheduling and allocation of human and material resources. While these areas remain important to the future, the International Space Station (ISS) requires that the Life Sciences spaceflight experiments expand the existing project management methodology. The use of telescience with state-of-the-art information technology and the multi-national crews and investigators challenges the former management processes. Actually conducting experiments on board the ISS will be an enormous undertaking and International Agreements and Working Groups will be essential in giving guidance to the flight project management Teams forged in this matrix environment must be competent to make decisions and qualified to work with the array of engineers, scientists, and the spaceflight crews. In order to undertake this complex task, data systems not previously used for these purposes must be adapted so that the investigators and the project management personnel can all share in important information as soon as it is available. The utilization of telescience and distributed experiment operations will allow the investigator to remain involved in their experiment as well as to understand the numerous issues faced by other elements of the program. The complexity in formation and management of project teams will be a new kind of challenge for international science programs. Meeting that challenge is essential to assure success of the International Space Station as a laboratory in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号