首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
不同周向位置端壁翼刀对压气机叶栅损失影响的实验研究   总被引:1,自引:0,他引:1  
在低速大尺寸叶栅风洞上通过详细测量叶栅流场,研究了叶栅端壁上不同周向位置处加装端壁翼刀对压气机叶栅损失和二次流的影响。实验结果表明,合理选择翼刀安装位置,可有效地控制压气机叶栅的二次流,降低叶栅的总损失。进一步对实验方案中叶栅总损失最小的翼刀位置的叶栅内流场进行了测量,分析了安装翼刀后流场内涡系结构的变化,探讨了翼刀涡的形成和发展变化。   相似文献   

2.
高负荷轴流压气机叶栅二次流动与损失关联性探讨   总被引:7,自引:6,他引:1       下载免费PDF全文
为探讨压气机中二次流与损失生成的关联性,对一高负荷轴流压气机叶栅开展数值模拟研究。首先对叶栅流动进行定性分析,在此基础上推导定量模型估算流场中的损失源,并由此获得二次流动诱发损失的机理与影响。研究结果显示,在大部分攻角范围内,二次流诱发的损失未超过50%。相对于二次流间接作用于低速流而诱发的损失而言,其直接耗散产生的损失仅为小量;在角区失速时的详细观测也显示,通道横流的流向变化,也即二次流对低速流间接影响的变化是导致通道内损失随攻角激增的主要原因。  相似文献   

3.
陶德平  马继华 《航空学报》1989,10(3):119-125
 本文给出了压气机叶栅出口截面的损失分布和气流角沿叶高的变化。叶栅二次涡和端壁吸力面角区分离引起流面翘曲和扭转,角区分离形成损失核心。二次流理论计算叶栅出气角沿叶高变化与实验相近。  相似文献   

4.
压气机叶栅内不同高度端壁翼刀的实验   总被引:1,自引:0,他引:1  
通过采用五孔探针在低速平面风洞上测量压气机叶栅流场的方法,研究了不同高度和周向位置的端壁翼刀对叶栅能量损失及二次流速度矢量的影响.结果表明,使叶栅总损失降低的最佳周向安装位置是距离吸力面70%相对节距处,最佳翼刀高度为5 mm;存在使叶栅总损失降低的极限翼刀高度.当翼刀高度增加时,翼刀涡更加清晰.安装翼刀可以改变叶栅端壁损失的分布,进而控制吸力面/端壁角区的流动,改善叶栅的气动性能.   相似文献   

5.
压气机叶栅中应用弯曲叶片的研究   总被引:9,自引:1,他引:8  
从弯曲叶片控制叶栅二次流的机理出发,讨论了压气机叶栅中应用弯曲叶片的特殊性,并根据国内外的有关文献和通过实验所取得的研究结果,分析了压气机叶栅中应用弯曲叶片的国内外研究现状、实际应用情况及未来的发展前景。  相似文献   

6.
高负荷压气机叶栅开缝射流分离控制效果研究   总被引:2,自引:2,他引:0       下载免费PDF全文
为了控制高负荷压气机叶栅分离,设计了一种弧线型缝隙射流方法,通过叶栅实验予以验证。结果显示,缝隙射流显著的减小了叶栅尾缘分离的宽度,提高了分离区内的气流速度,降低了叶栅流动损失;抑制了叶栅内复杂的端壁二次流,使出口流场更加均匀。在0°,3°和6°攻角下,叶栅的平均损失系数降低了7.0%,32.1%和32.3%,平均气流转折角提高了4.02°,3.59°和1.78°。在-3°攻角下,平均气流转折角提高了0.59°,但叶栅损失系数提高了12.3%。可见在分离条件下,缝隙射流极大提高了叶栅气动性能,但在无分离条件下会引起额外的损失。在整个攻角范围内,开缝叶栅保持了不低于原型叶栅设计点的静压升系数,且稳定工作范围扩宽了至少3°攻角。  相似文献   

7.
微型涡流发生器控制压气机叶栅二次流的数值研究   总被引:2,自引:2,他引:0       下载免费PDF全文
马姗  楚武利  张皓光  旷海洋  李相君 《推进技术》2017,38(12):2641-2651
二次流对压气机叶栅的性能有很大影响,为了探究微型涡流发生器(MVG)对于低马赫数来流叶栅的二次流控制情况,以一进口来流Ma0.1的高负荷轴流压气机叶栅为研究对象,用数值方法分别对设计攻角(-1°)以及失速攻角(8°)下的流场进行损失分析,并借鉴失速因子对不同组合形式的MVG进行对比。得出在-1°攻角下,大部分MVG具有延缓分离的作用,但都会引起损失增加;在8°攻角下,所有MVG都具有延缓分离、减少损失的作用。损失减少最多的一组VGdvg3达到6.3%,失速系数减小了46%,因此认为MVG对于大分离区域的控制较为有效。MVG主要控制0%~30%叶高方向损失,并且MVG的叶片间距以及安装位置也存在一个最佳范围,不易过大或过小。  相似文献   

8.
非轴对称端壁下高负荷压气机叶栅二次流动分析   总被引:3,自引:2,他引:1  
探讨了高负荷压气机叶栅中应用非轴对称端壁的有效性.首先利用NUMECA/Design3D优化软件包来完成了对端壁的优化,然后推导并建立了高负荷压气机叶栅出口含全部掺混损失的二次流损失的计算方法,最后在设计攻角和非设计攻角下对轴对称端壁和非轴对称端壁结构的高负荷压气机叶栅内部及出口流场进行了详细的分析.分析结果表明:在设计攻角和非设计攻角下采用非轴对称端壁均能改变端壁附近载荷分布、降低叶片通道的二次流动损失;在设计攻角下使叶栅周向质量平均总压损失减少约为9.4%,在非设计攻角(±3°)下分别减损7.7%和11.8%;当非轴对称端壁幅值为4%叶高时,二次流动损失最小.   相似文献   

9.
端壁采用孔式抽吸对扩压叶栅气动性能的影响   总被引:4,自引:4,他引:0       下载免费PDF全文
为明晰孔式附面层抽吸技术对压气机叶栅气动性能的作用效果,实验研究了在端壁不同位置设置抽吸孔时对大折转角扩压叶栅壁面流谱、出口二次流及损失的影响。研究结果表明,端壁抽吸改变了原型叶栅内部流场结构,角区分离起始点前进行附面层吸除可有效延缓通道涡的形成,降低叶栅损失;分离起始点之后角区分离已经充分发展的位置不宜布置抽吸孔;相比较抽吸槽,采用抽吸孔可以通过更少的抽吸量达到相同程度地对叶栅流动性能的改善。   相似文献   

10.
为了进一步揭示吸力面叶尖小翼控制压气机叶栅间隙泄漏流动的作用机制,实验研究了三种不同宽度吸力面小翼在3%弦长间隙下对压气机叶栅气动性能的影响,并建立了带吸力面小翼的压气机叶栅旋涡结构模型。研究结果表明,吸力面小翼使得泄漏流在翼顶通道内发生掺混,延缓了泄漏涡的形成并降低了泄漏涡强度,三种宽度吸力面小翼分别使叶栅损失降低6.9%,7.7%和8.2%。吸力面小翼对叶栅损失值的降低量并不与其自身宽度增加量成线性关系。较大宽度的吸力面小翼会导致近端壁区气流欠偏转程度增加及泄漏流掺混损失等附加损失增大。  相似文献   

11.
端壁翼刀控制压气机叶栅二次流的数值研究   总被引:6,自引:3,他引:3  
对CDA常规直叶栅和4种端壁翼刀方案下叶栅内三维粘性流场进行了数值研究。分析表明,端壁不同位置上的翼刀不同程度上都阻断了近端壁区域压力面至吸力面的二次流动,翼刀上方偏向吸力面侧有反向"翼刀涡"产生,通道涡的强度被削弱;距压力面30%节距位置为安装端壁翼刀的最佳位置,可使损失降低7%~9%。计算结果和实验结果吻合较好。   相似文献   

12.
吸附式压气机叶栅气动性能计算模拟研究   总被引:3,自引:1,他引:2  
周正贵  王传宝 《航空动力学报》2007,22(12):2036-2042
为考察附面层吸附技术在压气机静子势流区叶型上的应用,采用流场数值计算方法对吸气叶栅流场进行模拟.结果表明:(1)对于高亚声速压气机叶栅,采用吸力面附面层吸除可提高叶栅的扩压度,但不一定能减小流动损失.(2)对于中亚声压气机叶栅,采用吸力面附面层吸除不仅可提高叶栅的扩压度而且能减小流动损失.(3)如果叶片吸力面靠后缘处有流动分离,吸气位置在分离区的上游较远处可抑制分离,若在分离区附近可能不利于抑制流动分离.   相似文献   

13.
射流旋涡发生器控制大折转角扩压叶栅二次流   总被引:10,自引:4,他引:6  
将射流旋涡发生器引入到某折转角为60°的扩压叶栅端壁二次流控制中,研究了射流方向和射流总压对扩压叶栅气动性能及栅内流动的影响.结果表明:当射流旋涡发生器侧向倾角为0°时,仅采用不足扩压叶栅进口流量0.5%的射流流量,即可显著减少栅内损失.射流旋涡有效阻碍和推迟了通道涡发展,在下洗侧将主流流体卷入端壁附面层内,而在上洗侧将低能流体带入主流中,从而减少了角区低能流体聚积,减弱了吸力面的分离流动.当射流进口总压采用与扩压叶栅进口相同的总压时,总压损失减小21.5%,且射流进口总压越大,其控制效果越明显.   相似文献   

14.
边界层吹吸气对高负荷扩压叶栅性能的影响   总被引:4,自引:4,他引:4       下载免费PDF全文
周杨  邹正平  刘火星  叶建 《推进技术》2007,28(6):647-652
采用边界层流动控制能够有效抑制扩压叶栅的流动分离。以某大弯折角低稠度扩压叶栅为研究对象,利用数值模拟手段研究了原型、叶片表面边界层单独吹气以及吹吸气相结合等边界层控制手段下的流场和叶栅性能变化情况。结果表明,无论是单独吹气还是吹吸气相结合的边界层控制方法,都能有效控制扩压叶栅中的边界层分离,从而较大幅度地增大叶栅负荷,并降低气动损失;计算表明,吹气和吸气的效果不尽相同,且吹吸气口位置及吹吸气流量对边界层的流动亦有较为明显的影响。其中采用1.7%的吹气流量,结合1.38%的吸气量,可以使静压增压比提高15%以上,而损失系数降低至原型的20%以内。  相似文献   

15.
This article is aimed to experimentally validate the beneficial effects of boundary layer suction on improving the aerodynamic performance of a compressor cascade with a large camber angle. The flow field of the cascade is measured and the ink-trace flow visualization is also presented. The experimental results show that the boundary layer suction reduces losses near the area of midspan in the cascade most effectively for all suction cases under test. Losses of the endwall could remarkably decrease only when the suction is at the position where the boundary layer has separated but still not departed far away from the blade surface. It is evidenced that the higher suction flow rate and the suction position closer to the trailing edge result in greater reduction in losses and the maximum reduction in the total pressure loss accounts to 16.5% for all cases. The suction position plays a greater role in affecting the total pressure loss than the suction flow rate does.  相似文献   

16.
进行了等离子体气动激励抑制低速压气机叶栅角区流动分离的数值仿真研究,并进行了实验验证.小攻角情况下,叶片吸力面角区流动分离导致显著的尾迹总压损失.来流速度为50 m/s(雷诺数为223 000)时,等离子体气动激励可以有效的抑制角区流动分离,降低总压损失.激励电压、频率分别为10 kV和22 kHz时,50%叶高处的尾迹压力分布基本不变,60%和70%叶高处的最大总压损失分别减小了13.83%和10.74%.增加激励电极组数或激励电压,可以增强抑制效果.   相似文献   

17.
李清华  曹志远  胡骏 《推进技术》2019,40(9):1991-2002
附面层吸/吹气是抑制流动分离、提高压气机叶片负荷的有效技术途径。针对超声速压气机叶栅内激波诱导的角区分离,分别采用多种不同的端壁吸/吹气方案对其进行流动控制,旨在探索端壁吸/吹气对激波干涉下角区分离的控制机理,并对比分析端壁吸/吹气对超声速压气机叶栅角区分离的控制效果。结果表明:在激波/端壁附面层干涉下,该超声速压气机叶栅内存在大范围的激波诱导角区分离,角区分离使得该超声速叶栅存在强三维效应,二维叶栅中的单正激波变为"斜激波+正激波"结构,叶中吸力面尾缘开式分离变为闭式分离;端壁吸气可有效抑制该超声速叶栅的角区分离,吸气后近端壁区损失系数大幅降低,最优端壁吸气缝方案的起始点与亚声速压气机叶栅相同,但端壁吸气后叶中的双激波结构变为单正激波结构,叶中流动分离增大;端壁吹气也可有效抑制角区分离,其控制效果略优于端壁吸气,其原因是吹气缝处的静压高于吸气缝,对激波的增强作用弱于端壁吸气;与端壁吸气方案不同的是,最优端壁吹气缝方案的起始点位于叶片前缘。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号