首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Massive stars, at least \(\sim10\) times more massive than the Sun, have two key properties that make them the main drivers of evolution of star clusters, galaxies, and the Universe as a whole. On the one hand, the outer layers of massive stars are so hot that they produce most of the ionizing ultraviolet radiation of galaxies; in fact, the first massive stars helped to re-ionize the Universe after its Dark Ages. Another important property of massive stars are the strong stellar winds and outflows they produce. This mass loss, and finally the explosion of a massive star as a supernova or a gamma-ray burst, provide a significant input of mechanical and radiative energy into the interstellar space. These two properties together make massive stars one of the most important cosmic engines: they trigger the star formation and enrich the interstellar medium with heavy elements, that ultimately leads to formation of Earth-like rocky planets and the development of complex life. The study of massive star winds is thus a truly multidisciplinary field and has a wide impact on different areas of astronomy.In recent years observational and theoretical evidences have been growing that these winds are not smooth and homogeneous as previously assumed, but rather populated by dense “clumps”. The presence of these structures dramatically affects the mass loss rates derived from the study of stellar winds. Clump properties in isolated stars are nowadays inferred mostly through indirect methods (i.e., spectroscopic observations of line profiles in various wavelength regimes, and their analysis based on tailored, inhomogeneous wind models). The limited characterization of the clump physical properties (mass, size) obtained so far have led to large uncertainties in the mass loss rates from massive stars. Such uncertainties limit our understanding of the role of massive star winds in galactic and cosmic evolution.Supergiant high mass X-ray binaries (SgXBs) are among the brightest X-ray sources in the sky. A large number of them consist of a neutron star accreting from the wind of a massive companion and producing a powerful X-ray source. The characteristics of the stellar wind together with the complex interactions between the compact object and the donor star determine the observed X-ray output from all these systems. Consequently, the use of SgXBs for studies of massive stars is only possible when the physics of the stellar winds, the compact objects, and accretion mechanisms are combined together and confronted with observations.This detailed review summarises the current knowledge on the theory and observations of winds from massive stars, as well as on observations and accretion processes in wind-fed high mass X-ray binaries. The aim is to combine in the near future all available theoretical diagnostics and observational measurements to achieve a unified picture of massive star winds in isolated objects and in binary systems.  相似文献   

2.
Theoretically predicted evolutionary phases of massive close binaries are compared with the observations. For the evolution up to the High-Mass X-ray Binary (HMXB) phase there is fair agreement between theory and observation. Beyond the HMXB phase there is much uncertainty. Notably it is puzzling why we observe so few systems consisting of a helium star and a neutron star (Cygnus X-3 is the only one found so far), and why the incidence of double neutron stars is so low. A better understanding of Common Envelope evolution is required in order to answer these questions. The role of velocity kicks imparted to neutron stars during supernova collapse is discussed. Such kicks might cause many runaway OB stars to be single.  相似文献   

3.
A NLTE-analysis is presented of high S/N spectra of the optical component of the standard massive X-ray binary Vela X-1. In combination with the orbital parameters we conclude that the optical star is highly helium enriched and is significantly overluminous compared to standard evolutionary tracks of massive accretion stars. We then propose a new accretion model able to explain these features.  相似文献   

4.
For the evolution of the secondary component of a massive close binary system, it is generally assumed that the mass accretion during core H-burning simply leads to its rejuvenation, i.e. that it evolves like a normal main sequence star with a mass corresponding to its mass after the accretion ceased. We reinvestigate this problem in the framework of a time-dependent semiconvection theory. We find that the process of adaptation of the convective core size to the new (larger) stellar mass may not be completed until core hydrogen depletion, i.e. no rejuvenation occurs. The resulting secondaries show strong differences compared to single stars of same mass.  相似文献   

5.
Taking as example a 60M star of solar metallicity, the state of the art of model calculations for very massive, from the main sequence to the supernova stage, is reviewed. It is argued that — due to the simple internal structure of Wolf-Rayet stars — the post main sequence evolutionary phases are currently those which are better understood. A brief discussion of the supernova outcome from very massive stars is given. Then, the more uncertain main sequence evolution is discussed. A first attempt to incorporate results about pulsational instabilities of very massive stars in stellar evolutionary calculations is performed. On its basis, a new type of evolutionary sequence for very massive stars is obtained, namely O-star → Of-star → H-rich WNL → LBV → H-poor WNL → WNE → WC → SN. This scenario is shown to correspond better to many observed properties of very massive stars than the standard one. It includes a model for the prototype LBV P Cygni.  相似文献   

6.
Models of nonthermal particle acceleration in the vicinity of active star forming regions are reviewed. We discuss a collective effect of both stellar winds of massive stars and core collapsed supernovae as particle acceleration agents. Collective supernova explosions with great energy release in the form of multiple interacting shock waves inside the superbubbles are argued as a favourable site of nonthermal particle acceleration. The acceleration mechanism provides efficient creation of a nonthermal nuclei population with a hard low-energy spectrum, containing a substantial part of the kinetic energy released by the winds of young massive stars and supernovae. We discuss a model of temporal evolution of particle distribution function accounting for the nonlinear effect of the reaction of the accelerated particles on the shock turbulence inside the superbubble. The model illustrates that both the low-energy metal-rich nonthermal component and the standard galactic cosmic rays could be efficiently produced by superbubbles at different evolution stages.  相似文献   

7.
The numbers and distribution of Population I O-type stars and Wolf-Rayet stars are reviewed. The numbers of known WR stars in the Galaxy, the LMC and the SMC are 185, 114, and 9, respectively. Distances and galactic distributions determined by various authors are compared. The single star and binary distributions are discussed in the light of evolutionary studies.  相似文献   

8.
The evolution of massive stars   总被引:1,自引:0,他引:1  
The evolution of stars with masses between 15 M 0 and 100M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution.The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities.Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15M 0 and a 25M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed.The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface.The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed.The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined.Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss.  相似文献   

9.
Nearby supernovae like SN 1987A and SN 1993J provide valuable constraints on the late evolution of massive stars. For this purpose, we review evolutionary models for the progenitor of SN 1987A and confront them with five observational/theoretical tests we devised. We show that single-star models (with the possible exception of rapid-rotation models) fail at least two of these tests, while two binary models (accretion and merger models) are consistent with all available constraints. We conclude that it is most likely that the progenitor of SN 1987A had a binary companion, either at the time of the explosion or at least in the not-too-distant past, and that SN 1987A should therefore not be used to calibrate single stellar evolution theory. For SN 1993J, we infer from the presupernova photometry and the early light curve that its progenitor was a 15M star that lost almost all of its hydrogen-rich envelope prior to the supernova. This seems to require that the progenitor underwent stable case C mass transfer. We discuss future observational tests of binary models for both supernovae.  相似文献   

10.
The spin periods of accreting neutron stars in binary systems with Be star primaries are shown to depend more strongly on periastron distance than apastron distance. This is interpreted as showing that neutron stars spin-up on shorter timescales than they spin-down. The pulse and orbital periods of V 0332+53 suggest that the optical counterpart of this source is a Be star.  相似文献   

11.
Massive stars are crucial building blocks of galaxies and the universe, as production sites of heavy elements and as stirring agents and energy providers through stellar winds and supernovae. The field of magnetic massive stars has seen tremendous progress in recent years. Different perspectives—ranging from direct field measurements over dynamo theory and stellar evolution to colliding winds and the stellar environment—fruitfully combine into a most interesting and still evolving overall picture, which we attempt to review here. Zeeman signatures leave no doubt that at least some O- and early B-type stars have a surface magnetic field. Indirect evidence, especially non-thermal radio emission from colliding winds, suggests many more. The emerging picture for massive stars shows similarities with results from intermediate mass stars, for which much more data are available. Observations are often compatible with a dipole or low order multi-pole field of about 1 kG (O-stars) or 300 G to 30?kG (Ap/Bp stars). Weak and unordered fields have been detected in the O-star ζ Ori A and in Vega, the first normal A-type star with a magnetic field. Theory offers essentially two explanations for the origin of the observed surface fields: fossil fields, particularly for strong and ordered fields, or different dynamo mechanisms, preferentially for less ordered fields. Numerical simulations yield the first concrete stable (fossil) field configuration, but give contradictory results as to whether dynamo action in the radiative envelope of massive main sequence stars is possible. Internal magnetic fields, which may not even show up at the stellar surface, affect stellar evolution as they lead to a more uniform rotation, with more slowly rotating cores and faster surface rotation. Surface metallicities may become enhanced, thus affecting the mass-loss rates.  相似文献   

12.
Urca-processes were introduced into astrophysics by Gamow and Schoenberg in 1941. Neutrino cooling resulting from urca-processes plays an important role at the latest stages of evolution of massive stars. Recent work on neutrino emissivity of dense matter shows that neutrino cooling via urca-processes could determine the thermal evolution of young neutron stars and depends dramatically on the composition of the neutron star core. In particular, if a neutron star contains a central core in which the direct urca-process is operative, the cooling timescale shortens by many orders of magnitude.  相似文献   

13.
P Cygni is a prototype for understanding mass loss from massive stars. This textbook star is known first of all because of two great eruptions in the 17th century. In the first half of this century it has given its name to a class of stars which are characterized by spectral lines consisting of nearly undisplaced emissions accompanied by a blue-displaced absorption component. This characteristic P Cygni-type profile betrays the presence of a stellar wind, but P Cygni's wind is quite unlike that of other hot supergiants. P Cygni was the first star that showed the effects of stellar evoluton from a study of its photometric history. It shares some common properties with the so-called Luminous Blue Variables. However, P Cygni is a unique object. This review deals with P Cygni's photometric properties, its circumstellar environment - including infrared and radio observations - and its optical and ultraviolet spectrum. Smaller sections deal with P Cygni's wind structure and evolution. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
刘先一  周召发  张志利  赵军阳  段辉 《航空学报》2020,41(8):623560-623560
数字天顶仪作为一种地面使用的星敏感器,主要用于高精度定位。为提高仪器的工作效率需要对星图识别的快速性进行研究。通过对恒星像点理论坐标与图像坐标的分析,构建坐标转换模型。依据星表中恒星的分布及星等筛选出视场范围内的亮星,并构建导航星表。结合导航星表完成3颗亮星的准确识别,在识别亮星的基础上解算坐标转换模型的参数。通过构建的坐标转换模型对视场范围内的恒星进行坐标转换,将转换后的星点坐标与提取的星点图像坐标进行匹配完成星图的识别,这样能够提高星图识别的快速性。实验数据表明:在保证识别星点数量的基础上,采用亮星辅助下基于坐标转换的星图识别方法使时间缩短为改进三角形星图识别算法的五分之一。  相似文献   

15.
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.  相似文献   

16.
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.  相似文献   

17.
The Be stars     
Classical Be stars are defined and their relationship to normal B-type stars stated. Spectral classification of the underlying stars suggests that, on the average, Be stars are located 0.5–1.0 magnitude above the main sequence. Struve's rotational model for Be stars, and several tests which support the model, are reviewed. The best evidence at this time suggests that Be stars may not rotate with the critical velocity at which centrifugal force just balances the equatorial gravitational force, but a number of mechanisms for getting material out into the shell have been proposed and are discussed.The physical characteristics of Be shells were first derived from optical observations of shell stars, supplemented more recently by ultraviolet, infrared, radio, and polarization measurements. These data suggest that Be shells are probably lenticular with radii 3 to 20 times the radius of the underlying star, excitation temperatures lower than those of the reversing layers, and electron densities in the range 1010-1013 cm-3.Variability of Be stars, from spectroscopic, photometric, and polarimetric observations, seems well established over time scales of years and months, but the evidence for night-to-night and hourly changes is somewhat conflicting. Of special interest are recent X-ray observations of several Be stars.Models for the envelopes of Be stars are reviewed, including state-state stellar wind models, time-dependent stellar wind models, the elliptical ring model, disk models, and binary models. Finally, the evolutionary status of Be stars is discussed, and some recommendations for future work made.  相似文献   

18.
It is commonly accepted that candidates for very high energy -ray sources are neutron stars, binary systems, black holes etc. Close binary systems containing a normal hot star and a neutron star (or a black hole) form an important class of very high energy -ray sources. Such systems are variable in any region of the electromagnetic spectrum and they enable us to study various stages of stellar evolution, accretion processes, mechanisms of particle acceleration, etc. Phenomena connected with this class of very high energy -ray sources are discussed. Particular emphasis has been placed on the TeV energy region.  相似文献   

19.
Among the X-ray/Be systems, A 0535 + 26/HDE 245770 has been noted, since its discovery, for its peculiar features in several respects, in a wide energy range. For this reason and for a series of concomitant favorable causes, this system has been one of the most studied among the massive X-ray binary systems. The most remarkable incident was that its optical identification with an early-type-emission-line star (O9.7IIIe) has led to a deep studies on Be stars and their interactions with neutron stars, which have allowed to discover, without unbiguity, the presence of optical indicators of consequent X-ray flares, as well as that Be stars in X-ray/Be systems behave just as normal Be stars. Overmore, thanks to the multifrequency coordinated observations of this system, the X-ray emissions from binary companion of the Be stars are best explained by assuming the presence of a thick equatorial disk with low expansion velocity and a thin polar region with high expansion velocity. This picture reconciled the strong discrepancy in mass loss rate evaluations coming from IR and from UV measurements, assuming that the observed regions are enterely distinct from each other, one being a high-density, low-velocity region, and the other being a low-density, very hot, rapidly-expanding disk-like zone.Since, this picture seems to be the best up-to-date frame to cuckold all the experimental panorama available on X-ray/Be systems, we would like to paint in this paper the multifrequency behaviour of A 0535 + 26/HDE 245770, which is the best studied among such systems, in order to stimulate future coordinated experimental-theoretical works on this very interesting class of objects.  相似文献   

20.
In this paper we present the new chemical-spectro-photometric models of population synthesis by Bressan, Chiosi & Fagotto (1993). The models are specifically designed for elliptical galaxies. They include the presence of dark matter and galactic winds triggered by the energy deposit from supernovae and winds of massive stars. The models are aimed at studying the UV-excess and its dependence on the metallicity, the color-magnitude relation, and the color evolution as a function of the redshift. It is shown that in order to explain the color-magnitude relation as a result of galactic winds, the energy input from massive stars is required. Supernovae alone cannot provide sufficient energy to start galactic wind before the metallicity and hence colors have got saturated. We show that the main source of the UV-excess are the old, hot HB and AGB manque stars of high metallicity present in varying percentages in the stellar content of a galaxy. Since in our model the mean and maximum metallicity are ultimately driven by the mass of the galaxy, this provides a natural explanation for the observed correlation between UV-excess and metallicity. Finally, looking at the color evolution as function of the redshift, we suggest that a sudden change occurring in the color (1550-V) at the onset of the old, hot HB and AGB manque stars of high metallicity, is a good age indicator. The detection of this feature at a certain redshift would impose firm constraints on the underlying cosmological model of the universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号