首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To cancel clutter, both medium-PRF waveforms which are ambiguous in both range and Doppler and high-PRF waveforms which are ambiguous in range but unambiguous in ambiguities, a previous paper has shown that superior results for a single target can be achieved by using a clustering algorithm. Here, the problem of multiple targets is considered. A maximum likelihood (ML) technique which incorporates the clustering algorithm is developed for the multiple target problem. Simulation results show that four targets which have the same speed but are at different ranges can be resolved by using a medium-PRF waveform and employing the ML resolution technique  相似文献   

2.
The clutter performance of coherent pulse trains is examined when the duration of the pulse train is increased to values for which range acceleration effects must be taken into account. The problem of target detection against a clutter background with differential Doppler is studied in terms of the range acceleration effects on the conventional Doppler response. Specifically considered are the consequences on the sidelobe level and width of the main Doppler lobe. The analysis shows that the sidelobe level remains essentially unchanged when the range acceleration mismatch becomes significant. However, the main Doppler response broadens in proportion to the magnitude of the acceleration mismatch. Thus, an increase of the signal duration for better Doppler resolution is useful only until acceleration effects spread the Doppler spectrum of the clutter and eliminate the differential Doppler between targets and clutter.  相似文献   

3.
Radar measurement and resolution performance, as well as target detection in clutter, depend largely on the transmitted waveform. This explains the sizable effort that has gone into studies of radar waveforms, including attempts at the synthesis of optimum waveforms. This paper shows that, despite the unlimited variety of radar signals, waveform selection is a straightforward process. There are only four classes of waveforms, each with distinct resolution properties. When the target environment is analyzed for a particular application, it is rather evident which of these classes will fit the situation best. Choice of the specific waveform within the selected class then is merely a matter of practical implementation. Although the facts used in developing the unified theory of this paper are not new, it is demonstrated that these facts can be combined into an extremely simple theory of waveform design. Much of today's work is guided by past approaches to a particular problem, and when a design is completed there may be a question as to how close to the optimum it is. The theory presented here permits a systematic approach to waveform selection, with the important benefit that the designer knows exactly where and how much he may have deviated from the best design, and why this was done.  相似文献   

4.
Deals with the problem of detecting subspace random signals against correlated non-Gaussian clutter exploiting different degrees of knowledge on target and clutter statistical characteristics. The clutter process is modeled by the compound-Gaussian distribution. In the first part of the paper, the optimum Neyman-Pearson (NP) detector, the generalized likelihood ratio test (GLRT), and a constant false-alarm rate (CFAR) detector are sequentially derived both for the Gaussian and the compound-Gaussian scenarios. Different interpretations of the various detectors are provided to highlight the relationships and the differences among them. In particular, we show how the GLRT detector may be recast into an estimator-correlator form and into another form, namely a generalized whitening-matched filter (GWMF), which is the GLRT detector against Gaussian disturbance, compared with a data-dependent threshold. In the second part of this paper, the proposed detectors are tested against both simulated data and measured high resolution sea clutter data to investigate the dependence of their performance on the various clutter and signal parameters.  相似文献   

5.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

6.
A frequent compromise in the design of long-range search radars has to be made between the maximum unambiguous detection range and the achievable coherent clutter rejection performance. A new class of waveforms is introduced which offers the designer a previously unavailable flexibility in arriving at radar designs with improved clutter rejection without seriously affecting the maximum unambiguous search range. The key to these new waveforms is the recognition that a class of useful N-pulse, nonrecursive, moving target indicator (MTI) canceler designs exists which only requires the radar to transmit a total of N -1 (nonuniformly spaced) pulses.  相似文献   

7.
Application of Three-Dimensional Filtering to Moving Target Detection   总被引:3,自引:0,他引:3  
The standard approach to the detection of a stationary target immersed within an optically observed scene is to use integration to separate the target energy from the background clutter. When the target is nonstationary and moves with fixed velocity relative to the clutter, the procedure for integrating the target signal is no longer obvious. In this paper it is shown that the problem of tracking a target having a fixed velocity can be cast into a general framework of three-dimensional filter theory. From this point of view, the target detection problem reduces to the problem of finding optimal three-dimensional filters in the three-dimensional transform domain and processing the observed scene via this filtering. The design of these filters is presented, taking into account the target, clutter, and optical detection models. Performance is computed for a basic clutter model, showing the effective increase in detectability as a function of the target velocity. The three-dimensional transform approach is readily compatible with VLSI array processing technology.  相似文献   

8.
The designer of a communication system often has knowledge concerning the changes in distance between transmitter and receiver as a function of time. This information can be exploited to reduce multipath interference via proper signal design. A radar or sonar may also have good a priori information about possible target trajectories. Such knowledge can again be used to reduce the receiver's response to clutter (MTI), to enhance signal-to-noise ratio, or to simplify receiver design. There are also situations in which prior knowledge about trajectories is lacking. The system should then utilize a single-filter pair which is insensitive to the effects induced by relative motion between transmitter, receiver, and reflectors. For waveforms with large time-bandwidth products, such as long pulse trains, it is possible to graphically derive signal formats for both situations (trajectory known and unknown). Although the exact form of the signal is sometimes not specified by the graphical procedure, the problem in such cases is reduced to one which has already been solved, i. e., the generation of an impulse equivalent code.  相似文献   

9.
在低信噪比条件下,基于Hough变换的检测前跟踪算法是进行强杂波背景下目标航迹检测的一种手段。本文针对Hough变换后一个目标产生多条可能航迹以及航迹内可能存在杂波点的问题,提出了一种基于能量最大点和点集合并的修正Hough变换检测前跟踪算法。该算法利用量测点时序、能量信息及目标速度先验信息对Hough变换后点迹进行关联和剔除,能够有效的对目标原始航迹进行回溯。针对高斯噪声背景下的飞行目标,仿真结果表明该算法能够对微弱目标进行有效检测,在目标数目、杂波密度、信噪比发生变化的条件下仍能保持较高的检测概率。  相似文献   

10.
An algorithm is described which finds optimum transmitter and receiver weights to maximize clutter suppression in a predetermined clutter region when using burst waveforms. It is assumed that the transmitter weights can only take on values from a finite set. This optimization problem is solved using a branch and bound algorithm. An example is given which shows the improvement in clutter suppression when this new design procedure is used as compared to a simpler nonoptimal procedure.  相似文献   

11.
In a recent paper, general expressions were derived for the density and cumulative probability functions of the amplitude of a linear matched-filter output given a nonfluctuating target in a clutter-limited environment. These expressions were based on the clutter amplitude density function. The results are extended to calculate the cumulative probability function of the output of a linear matched filter used to detect a chi-square fluctuating target in a clutter-limited environment. The resulting method is applied to a common radar clutter model, and experimental sonar data.  相似文献   

12.
The problem of designing finite-pulse-train radar signals and receivers to maximize the detectability of targets masked by thermal noise and clutter returns is considered in this paper. A practical constraint is introduced: the amplitude of each subpulse in the transmit waveform is taken to be fixed. The need for such a constraint is dictated in most radar applications, because the transmitter is most efficiently utilized by saturating its amplifying tube. An algorithm for generating optimal waveforms subject to this new constraint is presented, and the performance of the resulting waveforms is compared with those obtained using existing optimization techniques.  相似文献   

13.
In active sonar systems, proper selection of the transmitted waveform is critical for target detection and parameter estimation, especially with the existence of clutter (reverberation). Two commonly used waveforms (constant frequency (CF) and linear frequency modulated (LFM)) are studied. Their characteristics are complementary both with respect to their accuracies and their sensitivity to the blind zero-Doppler ridge. Several fusion schemes of the two kinds of waveforms are explored and fusion results are studied both analytically and from simulation. It is concluded that fusion of the information of different waveforms can be not only more robust, but in some cases outright preferable, in term of detection probability and estimation accuracy.  相似文献   

14.
周延  冯大政  朱国辉 《航空学报》2015,36(9):3020-3026
传统的后多普勒自适应处理方法,如因子法(FA)和扩展因子法(EFA)虽然能大大降低自适应处理时的运算量和独立同分布样本的需求量,但由于实际中均匀训练样本数目的限制,当天线阵元数进一步增大时,FA和EFA抑制杂波和检测动目标的能力会显著恶化。针对这一问题,提出了一种空域数据重排的后多普勒自适应处理方法。该方法将多普勒滤波后的空域数据重排为一行列数相近的矩阵,空域滤波器权系数也表示成可分离的形式,从而得到一双二次代价函数,利用循环迭代的思想求解权系数。实验表明该方法具有快速收敛,所需训练样本少的优点,尤其在大阵列、小样本条件下该方法抑制杂波的性能明显优于FA和EFA。  相似文献   

15.
Clutter suppression is one of the most important subjects in the field of small target detection under infrared (IR) strong clutter background. While removing the clutter background, however, such methods may reverse the relative energy distribution of target and noise in the clutter suppressed image, and disturb the subsequent target segmentation and detection. This paper analyzes the causation of such problems, does research on the relationship between target energy characteristics and detection probability, and presents a novel filter of energy distribution adaptive rectification (EDARF). Based on the EDARF, an improved framework of dim small target detection is proposed to rectify the energy distribution in the clutter-suppressed images by conventional adaptive filters. The proposed EDARF's performance is estimated by experimental comparisons of three linear/nonlinear filters before and after using EDARF. Extensive experimental results show that the proposed EDARF improves efficiently the performance of detecting dim small targets against strong undulant cloud-cluttered backgrounds.  相似文献   

16.
This paper discusses the necessity, feasibility, and technology of FOPEN GMTI. It argues that this functionality may be one mode in a multi-function UWB UHF system, which jointly possesses the capabilities for air target MTI and high resolution FOPEN SAR. The radar platform may be a UAV or an aircraft, whereas, we propose to use the push boom type of antenna mounting previously adopted with the advantage for the CARABAS II UWB VHF SAR. Presently, the push booms will hold a set of UWB UHF antenna elements. This paper relates GMTI to SAR, extended from imaging stationary ground to the 4-parameter set of targets in linear and uniform motion relative to ground. It is recognised that this extended imaging problem depends on one new parameter, i.e., the SAR focusing velocity. The required signal processing may be tackled in an efficient manner by a hierarchical scheme based on iteratively merging subapertures and increasing the resolution. Rejection of stationary clutter and detection occurs on all levels of increasing resolution. This paper also provides a brief presentation of the Swedish FOA efforts to produce an experimental demonstrator of this multi-function radar system  相似文献   

17.
The design and evaluation of an adaptive moving target indicator (MTI) filter, the adaptive canceler for extended clutter (ACEC) is dealt with, taking into consideration adaptivity to clutter mean Doppler frequency. This consideration is one of the most important operational requirements in adaptive MTI's and permits a relatively simple hardware implementation as compared to more general optimization and adaptivity criteria (briefly described). The ACEC's algorithm compensates in real time for the clutter mean Doppler frequency. Performances have been obtained by digital computer simulation in various operational conditions.  相似文献   

18.
A recently proposed method of reducing target glint errors in radar systems using extended Kalman filtering is further extended with the inclusion of and compensation for clutter effects. A discrete target model and discrete Kalman filter (DKF) are used. Simulation results demonstrating the DKF are presented, and the limits on the effectiveness of the method are investigated. The major advantage of the DKF is that it can be implemented in software in the digital processor of the radar, offering flexibility over continuous time filters. The ability of the filter to reduce clutter effects further demonstrates the usefulness of this technique for radar pointing error reduction  相似文献   

19.
Analysis of CFAR performance in Weibull clutter   总被引:2,自引:0,他引:2  
Recent interest has focused on order statistic-based (OS-based) algorithms for calculating radar detection thresholds. Previous analyses of these algorithms are extended, to determine closed-form approximations for the signal-to-clutter ratio required to achieve a particular probability of detection in clutter environments whose amplitude statistics are modeled by the Weibull distribution, and where the clutter dominates receiver noise. Performance is evaluated in both homogeneous and inhomogenous clutter. The analysis shows that the OS-based algorithm is quite robust against both interference and clutter edges. A method is suggested for improving performance at clutter inhomogeneities for short-range targets  相似文献   

20.
The performance of certain radars is degraded in environments with significant clutter returns, and since the clutter is signal-generated, increasing the transmitted power does not improve the situation. However, changing the pulse width and pulse period of the transmitted signal can increase the input signal-to-interference ratio. In this correspondence, the transmitted signal is made up of pulses of random waveforms and the receiver is a correlator where the reference signal extends over many pulses. An expression for input signal-to-interference ratio as a function of pulse width and period is obtained for the case of a distributed target. This expression could be maximized by any of several methods, but to further elucidate the clutter reduction technique, contour plots of the input signal-to-interference ratio are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号