首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper deals with energetically optimal multi-impulse transfer of a spacecraft in the central Newtonian gravity field near a planet. At the initial state of the transfer the distance from the spacecraft to the center of attraction, its radial and transversal velocity projections are known. At the end of the transfer the spacecraft must be located in the elliptical orbit with the given area and energy constants. The distance from the spacecraft to the center of attraction is bounded above and below, the transfer time being unspecified. The initial orbit intersects the inner boundary of the given ring.All the optimal solutions have been obtained by analytical way. A number of new solutions has been found for the given problem in comparison with the case of the transfer from the orbit at the free initial point.Up to five impulses can be applied on the optimal trajectories. The numerical simulation of the problem is carried out. It shows that all obtained solutions give not only local but global optimal energetic input on the corresponding conditions.  相似文献   

2.
3.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for decades. Exterior and interior transfers, based on the transit through the regions where the collinear libration points are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is concerned with a geometrical approach for low-energy Earth-to-Moon mission analysis, based on isomorphic mapping. The isomorphic mapping of trajectories allows a visual, intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Two types of Earth-to-Moon missions are considered. The first mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a periodic orbit around the Moon. The second mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a capture (non-periodic) orbit around the Moon. In both cases three velocity impulses are needed to perform the transfer: the first at an unknown initial point along the low Earth orbit, the second at injection on the stable manifold, the third at injection in the final (periodic or capture) orbit. The final goal is in finding the optimization parameters, which are represented by the locations, directions, and magnitudes of the velocity impulses such that the overall delta-v of the transfer is minimized. This work proves how isomorphic mapping (in two distinct forms) can be profitably employed to optimize such transfers, by determining in a geometrical fashion the desired optimization parameters that minimize the delta-v budget required to perform the transfer.  相似文献   

4.
Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth–Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth–Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining suitable, convenient end-of-life strategies for spacecraft orbiting the Earth. Seven distinct options are identified, and lead to placing the spacecraft into the final disposal orbit, which is either (a) a lunar capture orbit, (b) a lunar impact trajectory, (c) a stable lunar periodic orbit, or (d) an outer orbit, never approaching the Earth or the Moon. Two remarkable properties that relate the velocity variations with the spacecraft energy are employed for the purpose of identifying the optimal locations, magnitudes, and directions of the velocity impulses needed to perform the seven transfer trajectories. The overall performance of each end-of-life strategy is evaluated in terms of time of flight and propellant budget.  相似文献   

5.
A. Miele  T. Wang 《Acta Astronautica》1992,26(12):855-866
The aeroassisted flight experiment (AFE) refers to an experimental spacecraft to be launched and then recovered by the Space Shuttle. It simulates a transfer from a geosynchronous Earth orbit (GEO) to a low Earth orbit (LEO). In this paper, with reference to an AFE-type spacecraft, an actual GEO-to-LEO transfer is considered under the following assumptions: the GEO and LEO orbital planes are identical; both the initial and final orbits are circular; the initial phase angle is given, while the final phase angle is free. The aeroassisted orbital transfer trajectory involves three branches: a preatmospheric branch, GEO-to-entry; an atmospheric branch, entry-to-exit; a post-atmospheric branch, exit-to-LEO. The optimal trajectory is determined by minimizing the total characteristic velocity. The optimization is performed with respect to the velocity impulses at GEO, LEO, and the time history of the angle of bank during the atmospheric pass. It is assumed that the entry path inclination is free and that the angle of attack is constant, = 17.0 deg. The sequential gradient-restoration algorithm is used to compute the optimal trajectory and it is shown that the best atmospheric pass is to be performed with constant angle of bank. The resulting optimal trajectory constitutes an ideal nominal trajectory for the generation of guidance trajectories for two reasons: the fact that the low value of the characteristic velocity is accompanied by relatively low values of the peak heating rate and the peak dynamic pressure; and the simplicity of the control distribution, requiring constant angle of bank.  相似文献   

6.
Methods are proposed for constructing the orbits of spacecraft remaining for long periods of time in the vicinity of the L 2 libration point in the Sun-Earth system (so-called halo orbits), and the trajectories of uncontrolled flights from low near-Earth orbits to halo orbits. Halo orbits and flight trajectories are constructed in two stages: A suitable solution to a circular restricted three-body problem is first constructed and then transformed into the solution for a restricted four-body problem in view of the real motions of the Sun, Earth, and Moon. For a halo orbit, its prototype in the first stage is a combination of a periodic Lyapunov solution in the vicinity of the L 2 point and lying in the plane of large-body motion, with the solution for the linear second-order system describing small deviations of the spacecraft from this plane along the periodic solution. The desired orbit is found as the solution to the three-body problem best approximating the prototype in the mean square. The constructed orbit serves as a similar prototype in the second stage. In both stages, the approximating solution is constructed by continuation along a parameter that is the length of the approximation interval. Flight trajectories are constructed in a similar manner. The prototype orbit in the first stage is a combination of a solution lying in the plane of large-body motion and a solution for a linear second-order system describing small deviations of the spacecraft from this plane. The planar solution begins near the Earth and over time tends toward the Lyapunov solution existing in the vicinity of the L 2 point. The initial conditions of both prototypes and the approximating solutions correspond to the spacecraft’s departure from a low near-Earth orbit at a given distance, perigee, and inclination.  相似文献   

7.
The application of forces in multi-body dynamical environments to permit the transfer of spacecraft from Earth orbit to Sun–Earth weak stability regions and then return to the Earth–Moon libration (L1 and L2) orbits has been successfully accomplished for the first time. This demonstrated that transfer is a positive step in the realization of a design process that can be used to transfer spacecraft with minimal Delta-V expenditures. Initialized using gravity assists to overcome fuel constraints; the ARTEMIS trajectory design has successfully placed two spacecrafts into Earth–Moon libration orbits by means of these applications.  相似文献   

8.
Grigoriev  I. S.  Grigoriev  K. G. 《Cosmic Research》2003,41(3):285-309
The necessary first-order conditions of strong local optimality (conditions of maximum principle) are considered for the problems of optimal control over a set of dynamic systems. To derive them a method is suggested based on the Lagrange principle of removing constraints in the problems on a conditional extremum in a functional space. An algorithm of conversion from the problem of optimal control of an aggregate of dynamic systems to a multipoint boundary value problem is suggested for a set of systems of ordinary differential equations with the complete set of conditions necessary for its solution. An example of application of the methods and algorithm proposed is considered: the solution of the problem of constructing the trajectories of a spacecraft flight at a constant altitude above a preset area (or above a preset point) of a planet's surface in a vacuum (for a planet with atmosphere beyond the atmosphere). The spacecraft is launched from a certain circular orbit of a planet's satellite. This orbit is to be determined (optimized). Then the satellite is injected to the desired trajectory segment (or desired point) of a flyby above the planet's surface at a specified altitude. After the flyby the satellite is returned to the initial circular orbit. A method is proposed of correct accounting for constraints imposed on overload (mixed restrictions of inequality type) and on the distance from the planet center: extended (nonpointlike) intermediate (phase) restrictions of the equality type.  相似文献   

9.
The optimality of a low-energy Earth–Moon transfer terminating in ballistic capture is examined for the first time using primer vector theory. An optimal control problem is formed with the following free variables: the location, time, and magnitude of the transfer insertion burn, and the transfer time. A constraint is placed on the initial state of the spacecraft to bind it to a given initial orbit around a first body, and on the final state of the spacecraft to limit its Keplerian energy with respect to a second body. Optimal transfers in the system are shown to meet certain conditions placed on the primer vector and its time derivative. A two point boundary value problem containing these necessary conditions is created for use in targeting optimal transfers. The two point boundary value problem is then applied to the ballistic lunar capture problem, and an optimal trajectory is shown. Additionally, the problem is then modified to fix the time of transfer, allowing for optimal multi-impulse transfers. The tradeoff between transfer time and fuel cost is shown for Earth–Moon ballistic lunar capture transfers.  相似文献   

10.
There are four bi-impulsive distinct configurations for the generalized Hohmann orbit transfer. In this case the terminal orbits as well as the transfer orbit are elliptic and coplanar. The elements of the initial orbit a1, e1 and the semi-major axis a2 of the terminal orbit are uniquely given quantities. For optimization procedure, minimization is relevant to the independent parameter eT, the eccentricity of the transfer orbit. We are capable of the assignment of minimum rocket fuel expenditure by using ordinary calculus condition of minimization for |ΔVA|+|ΔVB|=S.We exposed in detail the multi-steps of the optimization procedure. We constructed the variation table of S(eT) which proved that S(eT) is a decreasing function of eT in the admissible interval [eTmin,eTmax]. Our analysis leads to the fact that e2=1 for eT=eTmax, i.e. the final orbit is a parabolic trajectory.  相似文献   

11.
郑越  泮斌峰  唐硕 《宇航学报》2018,39(7):751-759
针对航天器在混沌区域的滑行时间过长,提出一种低能地月轨道转移的混沌控制方法。首先通过地月圆形限制性三体问题(CRTBP)的庞加莱截面图,将混沌区域进行分层并分析其规律,再利用混沌轨道对初始状态高度敏感的特性,在尽可能减少运送时间的前提下实现地月低能轨道转移。该方法的优点是利用混沌区域的固有规律,不需要依靠周期轨道特性。仿真结果表明,本文提出方法仅需施加2~4次脉冲,明显缩短混沌区域的滑行时间,从而实现地月低能转移。  相似文献   

12.
This paper gives a complete analysis of the problem of aeroassisted return from a high Earth orbit to a low Earth orbit with plane change. A discussion of pure propulsive maneuver leads to the necessary change for improvement of the fuel consumption by inserting in the middle of the trajectory an atmospheric phase to obtain all or part of the required plane change. The variational problem is reduced to a parametric optimization problem by using the known results in optimal impulsive transfer and solving the atmospheric turning problem for storage and use in the optimization process. The coupling effect between space maneuver and atmospheric maneuver is discussed. Depending on the values of the plane change i, the ratios of the radii, n = r1r2 between the orbits and a = r2R between the low orbit and the atmosphere, and the maximum lift-to-drag ratio E1 of the vehicle, the optimal maneuver can be pure propulsive or aeroassisted. For aeroassisted maneuver, the optimal mode can be parabolic, which requires only drag capability of the vehicle, or elliptic. In the elliptic mode, it can be by one-impulse for deorbit and one or two-impulse in postatmospheric flight, or by two-impulse for deorbit with only one impulse for final circularization. It is shown that whenever an impulse is applied, a plane change is made. The necessary conditions for the optimal split of the plane changes are derived and mechanized in a program routine for obtaining the solution.  相似文献   

13.
This article studies the efficiency of ejecting waste generated by the life support system (LSS) of a manned spacecraft to reduce initial mass on low earth orbit. The spacecraft is used for a long-duration interplanetary mission and is equipped with either a chemical or a nuclear-thermal propulsion system. For this study we simulate an optimal control problem for a given spacecraft maneuver. An impulsive approximation of the optimal interplanetary spacecraft trajectory is assumed, which allows us to reduce the general optimal control problem to hierarchic structure of 'outer' and 'inner' subproblems. This structure is analyzed using the Pontryagin's Maximum principle. Numerical results, illustrating the efficiency of waste ejection are shown for typical Earth-Mars transfer trajectories. This results confirm in theory that using a waste ejection system makes an early manned Mars mission possible without having to design and build new, advanced biological LSS.  相似文献   

14.
The problem of rarefied plasma flow near the body in highly rarefied ionized planet atmosphere is considered. Plasma is supposed to be non-isothermal, Ti ? Te. In the case of thermodynamically non-equilibrium electrons the solution of modified Korteweg-de Vries equation is estimated in the Mach cone region behind the body and it is shown that Mach cone appears to be curved.  相似文献   

15.
利用最优多脉冲方法,对目标航天器逼近过程的远程导引段轨道进行设计.基于Lawden主矢量理论,解决固定时间、燃料最省的逼近轨道问题.通过仿真分析了固定初始条件时燃料消耗量随着转移时间的变化关系.对于燃料和时间均有约束的情况,给出了求解燃料最省和时间最小的多目标优化问题的方法.这一研究对于评估具体任务的燃料消耗和转移时间有重要意义.  相似文献   

16.
Triple-satellite-aided capture employs gravity-assist flybys of three of the Galilean moons of Jupiter in order to decrease the amount of ΔVΔV required to capture a spacecraft into Jupiter orbit. Similarly, triple flybys can be used within a Jupiter satellite tour to rapidly modify the orbital parameters of a Jovicentric orbit, or to increase the number of science flybys. In order to provide a nearly comprehensive search of the solution space of Callisto–Ganymede–Io triple flybys from 2024 to 2040, a third-order, Chebyshev's method variant of the p-iteration solution to Lambert's problem is paired with a second-order, Newton–Raphson method, time of flight iteration solution to the VV-matching problem. The iterative solutions of these problems provide the orbital parameters of the Callisto–Ganymede transfer, the Ganymede flyby, and the Ganymede–Io transfer, but the characteristics of the Callisto and Io flybys are unconstrained, so they are permitted to vary in order to produce an even larger number of trajectory solutions. The vast amount of solution data is searched to find the best triple-satellite-aided capture window between 2024 and 2040.  相似文献   

17.
Ordinary estimations of the number of star collisions in our galaxy—by simple kinematic considerations—lead to a very small number of such collisions: about one or even less every millions of years. However star collisions can occur through the following indirect way which has a much higher probability. (a) Binary stars are very common in our galaxy, about 30–50% of the stars. (b) If two binary stars meet a triple system can be formed by an ordinary exchange type motion. (c) A triple system is generally decomposed into the “inner orbit” (i.e. the relative orbit of the two nearest stars) and the “outer orbit” (i.e. the relative orbit of the third star with respect to the center of mass of the two nearest stars). The major axes of these two orbits have generally small perturbations and it is the same for the eccentricity of the outer orbit. On the contrary, if the relative inclination of the two orbits is large, the perturbations of the eccentricity of the inner orbit are important and can even in some cases lead to an eccentricity equal to one, that is to a collision of the two stars of the inner orbit.Such orbits can be called “oscillating orbits of the second kind”, indeed the first oscillating orbits—conceived by Khilmi and described for the first time in an example by Sitnikov—have unbounded mutual distances rij, but the system always come back to small sizes, it has an infinite number of very large expansions followed by strong contractions and, in the three-body case, an upper bound of lim inf (r1.2 + r1.3 + r2.3) can be given in terms of the three masses and the integrals of motion. For the oscillating orbits of the second kind the mutual distances rij are bounded, but the velocities are unbounded (i.e. lim inf rij = 0 for at least one rij) and the system goes to a collision if the bodies have non-zero radius even small. The analytical study of the oscillating orbits of the second kind is a part of the general analytical study of the three-body problem, a part which must be valid for large eccentricities and large inclinations. The use of Delaunay's variables and of a Von Zeipel transformation lead to a first order integrable approximation, valid for any eccentricities and any inclinations, and giving the following results: (a) The oscillating orbits of the second kind occur when the angular momentum of the outer orbit has a modulus sufficiently close to the modulus of the total angular momentum of the three-body system. Hence these orbits occur for inclinations in the vicinity of 90°. (b) The oscillating orbits represent a set of positive measure of phase space and the first order study allows to give a rough estimation of the probability of collisions—even for stars of infinitely small radius. This probability, for given initial major axes and eccentricities and for isotropic arbitrary initial orientations, is generally of the order of m3RM (m3 being the mass of the outer star, M the total mass and R the ratio of the period of the inner orbit to that of outer orbit).One question remains to be solved: how many collisions of stars are due to that phenomenon? That question is difficult because the probability of formation of a triple system by a random meeting of two binaries is very uneasy to estimate. However it seems that, compared to the usual evaluations based on pure kinematic considerations without gravitational effects, the number of collisions must be multiplied by a factor between one thousand and one million.  相似文献   

18.
The problem of optimization of a spacecraft transfer to the Apophis asteroid is investigated. The scheme of transfer under analysis includes a geocentric stage of boosting the spacecraft with high thrust, a heliocentric stage of control by a low thrust engine, and a stage of deceleration with injection to an orbit of the asteroid’s satellite. In doing this, the problem of optimal control is solved for cases of ideal and piecewise-constant low thrust, and the optimal magnitude and direction of spacecraft’s hyperbolic velocity “at infinity” during departure from the Earth are determined. The spacecraft trajectories are found based on a specially developed comprehensive method of optimization. This method combines the method of dynamic programming at the first stage of analysis and the Pontryagin maximum principle at the concluding stage, together with the parameter continuation method. The estimates are obtained for the spacecraft’s final mass and for the payload mass that can be delivered to the asteroid using the Soyuz-Fregat carrier launcher.  相似文献   

19.
针对传统脉冲避障算法在航天器轨迹规划应用中存在对瞬时推力依赖性强且燃料消耗量大的问题,提出能量最优的连续动态避障算法。该算法首先基于线性相对运动方程与有限时间的能量最优模型,建立了相对运动能量最优模型,同时验证了模型最优性;其次将动态障碍物的 y 向运动误差偏移与正态分布概率引入避碰安全距离模型,修正了追踪航天器动态避障的范围,确定了安全距离矢量长度,增强了规避障碍的可靠性;最后通过障碍物速度矢量与追踪器航天器速度矢量夹角确定动态避障点方向,减少燃料消耗的同时提高了避障的有效性、准确性。通过仿真验证,该算法可以自适应选取规避障碍点,有效规避动态障碍;工质燃料消耗较小,有效延长航天器在轨寿命。  相似文献   

20.
《Acta Astronautica》2007,60(8-9):631-648
This paper investigates the problem of continuous-thrust orbital transfer using orbital elements feedback from a nonlinear control standpoint, utilizing concepts of controllability, feedback stabilizability and their interaction. Gauss's variational equations (GVEs) are used to model the state-space dynamics of motion under a central gravitational field. First, the notion of accessibility is reviewed. It is then shown that the GVEs are globally accessible. Based on the accessibility result, a nonlinear feedback controller is derived which asymptotically steers a spacecraft form an initial elliptic orbit to any given elliptic orbit. The performance of the new controller is illustrated by simulating an orbital transfer between two geosynchronous Earth orbits. It is shown that the low-thrust controller requires less fuel than an impulsive maneuver for the same transfer time. Closed-form, analytic expressions for the new orbital transfer controller are given. Finally, it is proven, based on a topological nonlinear stabilizability test, that there does not exist a continuous closed-loop controller that can transfer a spacecraft onto a parabolic escape trajectory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号