首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
王小妮 《飞机设计》2008,28(3):13-15
提出了一种将代理模型用于机翼结构外形优化的方法。重点介绍了建立结构分析代理模型的过程,包括确定设计变量及取值范围、生成试验设计点、建立参数化结构模型、有限元结构优化设计、提取结构特性并构造代理模型。最后通过一个简单的机翼结构优化算例验证了这种方法的可行性和有效性。  相似文献   

2.
基于代理模型的气动外形优化   总被引:7,自引:0,他引:7  
探讨了一种将CAD软件、CFD商用软件与代理模型相结合的飞机气动外形优化方法。重点介绍建立气动分析代理模型的过程,这一过程包括确定设计变量及其取值范围、生成试验设计点、建立参数化几何模型、CFD数值计算、提取气动特性和构造代理模型。通过一个简单的机翼气动外形优化算例验证了这种方法的可行性和有效性。  相似文献   

3.
《中国航空学报》2022,35(10):233-246
This study uses the Neural Network (NN) technique to optimize design of surface-mounted Permanent Magnet Synchronous Motors (PMSMs) for More-Electric Aircraft (MEA) applications. The key role of NN is to provide dedicated correction factors for the analytical PMSM mass and loss estimation within the entire design space. Based on that, a globally optimal design can be quickly obtained. Matching the analytical estimation with Finite-Element Analysis (FEA) is the main research target of training the NN. Conventional analytical formulae serve as the basis of this study, but they are prone to loss accuracy (especially for a large design space) due to their assumptions and simplifications. With the help of the trained NNs, the analytical motor model can give an estimation as accurate as the FEA but with super less time during the optimization process. The Average Correction Factor (ACF) approach is regarded as the comparison method to demonstrate the excellent performance of the proposed NN model. Furthermore, a NN aided three-stage-seven-step optimization methodology is proposed. Finally, a Pole-10-Slot-12 PMSM case study is given to demonstrate the feasibility and gain of the NN aided multi-objective optimization approach. In this case, the NN aided analytical model can generate one motor design in 0.04 s while it takes more than 1 min for the used FEA model.  相似文献   

4.
气动优化设计中,为了减少优化系统的计算周期,提高搜索效率,引入结构简单、计算量较小的代理模型,而运用有效的插值和选样方法(自适应选样)可以大大减少建立代理模型的时间。因此本文提出了一种基于自适应代理模型的气动优化方法。首先对自适应代理模型进行研究,建立了 Kriging 自适应代理模型和支持向量回归自适应代理模型,这两种自适应代理模型在相同样本点情况下比一般代理模型拥有更高的预测能力,然后将这其应用到翼型优化设计中,取得了良好的优化效果,从而表明这两种自适应代理模型不仅简单实用,而且明显提高了气动分析的计算效率。  相似文献   

5.
Aerodynamic design optimization of nacelle/pylon position on an aircraft   总被引:1,自引:0,他引:1  
The arbitrary space-shape free form deformation (FFD) method developed in this paper is based on non-uniform rational B-splines (NURBS) basis function and used for the integral parameterization of nacelle-pylon geometry. The multi-block structured grid deformation technique is established by Delaunay graph mapping method. The optimization objects of aerodynamic characteristics are evaluated by solving NavierStokes equations on the basis of multi-block structured grid. The advanced particle swarm optimization (PSO) is utilized as search algorithm, which com-bines the Kriging model as surrogate model during optimization. The optimization system is used for optimizing the nacelle location of DLR-F6 wing-body-pylon-nacelle. The results indicate that the aerodynamic interference between the parts is significantly reduced. The optimization design system established in this paper has extensive applications and engineering value.  相似文献   

6.
基于CST参数化方法气动优化设计研究   总被引:6,自引:0,他引:6  
翼型及机翼优化设计中,设计变量的个数对优化算法的收敛速度及代理模型的精度有很大的影响.因此,在精确描述翼型的同时,发展较少设计变量的翼型参数化方法对翼型优化设计有着重要的意义.本文基于CST(class function/shape function transformation)翼型参数化方法对Kriging模型的预测精度进行研究,并采用改进的粒子群优化算法构建气动优化设计系统.某亚声速机翼单点减阻设计及超临界翼型的稳健性设计表明该系统具有较高的设计质量,方法可靠,有较高的工程应用前景.  相似文献   

7.
Multi-fidelity Data Fusion(MDF) frameworks have emerged as a prominent approach to producing economical but accurate surrogate models for aerodynamic data modeling by integrating data with different fidelity levels. However, most existing MDF frameworks assume a uniform data structure between sampling data sources; thus, producing an accurate solution at the required level, for cases of non-uniform data structures is challenging. To address this challenge, an Adaptive Multi-fidelity Data Fusion(...  相似文献   

8.
基于替代模型的高超声速前体/进气道一体化优化   总被引:4,自引:3,他引:1  
采用基于替代模型的渐进优化策略对二维高超声速前体/进气道进行一体化设计优化,采用拉丁超立方试验设计法选择样本点,采用二维粘性CFD方法计算进气道流场来建立样本数据库,综合运用了多项式响应面、Kriging模型、BP神经网络和径向基神经网络等替代模型.相对于基准构型,前体/进气道的优化构型在设计态时提高了流量捕获与来流压缩能力,提高了总压恢复性能,同时减小了阻力系数,综合性能提高了5.3%;在非设计态时优化构型的综合性能也有不同程度的改善.   相似文献   

9.
Kriging模型及代理优化算法研究进展   总被引:28,自引:7,他引:21  
韩忠华 《航空学报》2016,37(11):3197-3225
代理模型方法由于能显著提高工程优化设计问题的效率,在航空航天及其他领域得到了广泛重视,并逐渐发展成为一类优化算法,本文称其为代理优化(SBO)算法。在现有的代理模型方法中,如多项式响应面、径向基函数、神经网络、支持向量回归、多变量插值/回归、多项式混沌展开等,源于地质统计学的Kriging模型具有代表性,是一种非常具有应用潜力的代理模型方法。以飞行器设计领域的优化问题为背景,介绍了Kriging代理模型及应用于优化设计的理论和算法的最新研究进展。首先,概述了Kriging模型的基本理论和算法,并讨论了影响Kriging模型鲁棒性和效率的几个关键性问题。其次,回顾了Kriging模型理论和算法研究的3个最新研究进展,包括梯度增强型Kriging、CoKriging和分层Kriging模型。而后,分析提炼了基于Kriging模型的代理优化算法的优化机制和优化框架,给出了“优化加点准则”和“子优化”的概念,并介绍了目前常用的几种优化加点准则及其相应子优化问题的求解与约束处理;同时,还介绍了最新提出的局部EI加点准则以及代理优化的终止条件。最后,介绍了代理优化在标准测试函数算例验证、飞行器气动与多学科优化设计典型算例确认方面的研究进展,并对当前存在的一些关键科学问题以及未来研究方向进行了讨论。  相似文献   

10.
王烁  李萍  陈万春 《飞行力学》2012,30(1):43-47
传统的气动计算方法计算繁琐、计算效率低,不适应于乘波体多学科设计优化,通过建立气动代理模型可以很好地解决气动计算精度和效率的矛盾.利用面元法进行气动估算,采集了锥导乘波体在设计点、非设计点的气动特性作为训练数据,构建了Kriging和LS-SVM代理模型,对比了两种模型对此高维问题的代理效果.结果表明,Kriging代理模型能更准确地表达锥导乘波体的气动特性,应用代理模型进行优化等工作的计算效率与传统气动计算方法相比有显著的提高.  相似文献   

11.
一种高效的基于可靠性的多学科设计优化方法(英文)   总被引:2,自引:0,他引:2  
Design for modem engineering system is becoming multidisciplinary and incorporates practical uncertainties; therefore, it is necessary to synthesize reliability analysis and the multidisciplinary design optimization (MDO) techniques for the design of complex engineering system. An advanced first order second moment method-based concurrent subspace optimization approach is proposed based on the comparison and analysis of the existing multidisciplinary optimization techniques and the reliability analysis methods. It is seen through a canard configuration optimization for a three-surface transport that the proposed method is computationally efficient and practical with the least modification to the current deterministic optimization process.  相似文献   

12.
《中国航空学报》2023,36(2):402-416
The use of space robots (SRs) for on-orbit services (OOSs) has been a hot research topic in recent years. However, the space unstructured environment (i.e.: confined spaces, multiple obstacles, and strong radiation interference) has greatly restricted the application of SRs. The coupled active-passive multilink cable-driven space robot (CAP-MCDSR) has the characteristics of slim body, flexible movement, and electromechanical separation, which is very suitable for extreme space environments. However, the dynamic and stiffness modeling of CAP-MCDSRs is challenging, due to the complex coupling among the active cables, passive cables, joints, and the end-effector. To deal with these problems, this paper proposes a workspace, stiffness analysis and design optimization method for such type of MCDSRs. Firstly, the multi-coupling kinematics relationships among the joint, cables and the end-effector are established. Based on hybrid series-parallel characteristics, the improved coupled active–passive (CAP) dynamic equation is derived. Then, the maximum workspace, the maximum stiffness, and the minimum cable tension are resolved, among them, the overall stiffness is the superposition of the stiffness produced by the active and the passive cable. Furthermore, the workspace, the stiffness, and the cable tension are analyzed by using the nonlinear optimization method (NOPM). Finally, an 8-DOF CAP-MCDSR experiment system is built to verify the proposed modeling and trajectory tracking methods. The proposed modeling and analysis results are very useful for practical space applications, such as designing a new CAP-MCDSR, or utilizing an existing CAP-MCDSR system.  相似文献   

13.
王宇  余雄庆 《航空学报》2009,30(10):1883-1888
由于在各种设计问题包括飞机概念设计中都存在一定的不确定性,因此在总体参数优化时有必要考虑这种不确定性。以大型客机总体参数优化设计为例,定义了考虑不确定性的飞机总体参数优化问题,该问题与传统飞机总体参数优化的区别是要进行不确定性分析。而不确定性分析的计算量过大,为此提出了一种渐进代理模型方法来解决这一难题。在建立代理模型时,通过连续成批地在设计空间的全局和局部均加入新样本点,不断提高代理模型的全局拟合精度,直至获得满意的代理模型为止。然后在优化过程中使用计算量小的代理模型。大型客机总体参数优化问题中含有5个设计变量,目标函数为起飞重量最轻,并需满足4个性能约束。考虑了不确定性后,不仅使目标值(起飞重量)对总体参数变化的敏感度有所减小,而且满足约束(设计要求)概率显著提高。  相似文献   

14.
This paper focuses on a method to solve structural optimization problems using particle swarm optimization (PSO), surrogate models and Bayesian statistics. PSO is a random/stochastic search algorithm designed to find the global optimum. However, PSO needs many evaluations compared to gradient-based optimization. This means PSO increases the analysis costs of structural optimization. One of the methods to reduce computing costs in stochastic optimization is to use approximation techniques. In this work, surrogate models are used, including the response surface method (RSM) and Kriging. When surrogate models are used, there are some errors between exact values and approximated values. These errors decrease the reliability of the optimum values and discard the realistic approximation of using surrogate models. In this paper, Bayesian statistics is used to obtain more reliable results. To verify and confirm the efficiency of the proposed method using surrogate models and Bayesian statistics for stochastic structural optimization, two numerical examples are optimized, and the optimization of a hub sleeve is demonstrated as a practical problem.  相似文献   

15.
《中国航空学报》2020,33(5):1454-1467
In this paper, an Uncertainty-based Multi-disciplinary Design Optimization (UMDO) method combining with fuzzy theory and Multi-Discipline Feasible (MDF) method is developed for the conceptual design of a Hybrid Rocket Motor (HRM) powered Launch Vehicle (LV). In the method proposed, membership functions are used to represent the uncertain factors, the fuzzy statistical experiment is introduced to analyze the propagation of uncertainties, and means, standard deviations and credibility measures are used to delineate uncertain responses. A geometric programming problem is solved to verify the feasibility of the Fuzzy-based Multi-Discipline Feasible (F-MDF) method. A multi-disciplinary analysis of a three-stage HRM powered LV involving the disciplines of propulsion, structure, aerodynamics and trajectory is implemented, and the mathematical models corresponding to the F-MDF method and the MDF method are established. A two-phase optimization method is proposed for multi-disciplinary design optimization of the LV, including the orbital capacity optimization phase based on the Ziolkowski formula, and the scheme trajectory verification phase based on the 3-degree-of-freedom point trajectory simulation. The correlation coefficients and the quadratic Response Surface Method (RSM) based on Latin Hypercube Sampling (LHS) are adopted for sensitive analysis of uncertain factors, and the Multi-Island Genetic Algorithm (MIGA) is adopted as the optimization algorithm. The results show that the F-MDF method is applicable in LV conceptual design, and the design with the F-MDF method is more reliable and robust than that with the MDF method.  相似文献   

16.
Robust design of NLF airfoils   总被引:4,自引:3,他引:1  
 A robust optimization design approach of natural laminar airfoils is developed in this paper. First, the non-uniform rational B-splines (NURBS) free form deformation method based on NURBS basis function is introduced to the airfoil parameterization. Second, aerodynamic characteristics are evaluated by solving Navier-Stokes equations, and the γ-Reθt transition model coupling with shear-stress transport (SST) turbulent model is introduced to simulate boundary layer transition. A numerical simulation of transition flow around NLF0416 airfoil is conducted to test the code. The comparison between numerical simulation results and wind tunnel test data approves the validity and applicability of the present transition model. Third, the optimization system is set up, which uses the separated particle swarm optimization (SPSO) as search algorithm and combines the Kriging models as surrogate model during optimization. The system is applied to carry out robust design about the uncertainty of lift coefficient and Mach number for NASA NLF-0115 airfoil. The data of optimized airfoil aerodynamic characteristics indicates that the optimized airfoil can maintain laminar flow stably in an uncertain range and has a wider range of low drag.  相似文献   

17.
涡轮叶片的气动-热-结构多学科设计优化研究   总被引:10,自引:6,他引:4  
涡轮叶片设计是典型的多学科问题,在保证结果精度的同时必须重视计算效率.通过控制样本的数量和质量,近似模型能够在保证一定精度的前提下,简化多学科优化过程中的数据管理,并提高优化效率.通过分析涡轮转子叶片的气动-热-结构三个学科的设计过程和数据传递关系,充分利用各学科现有的分析工具,建立了涡轮叶片的气动-热-结构多学科优化设计框架.对某涡轮转子叶片分别使用Kriging近似模型和精确分析方法进行优化对比,可以看出两者的结果误差约为1.86%,而效率提高了将近46%,表明采用近似方法的优化结果在工程上是可用的,而且在计算效率更占优势.   相似文献   

18.
This paper presents a novel optimization technique for an efficient multi-fidelity model building approach to reduce computational costs for handling aerodynamic shape optimization based on high-fidelity simulation models. The wing aerodynamic shape optimization problem is solved by dividing optimization into three steps—modeling 3D(high-fidelity) and 2D(lowfidelity) models, building global meta-models from prominent instead of all variables, and determining robust optimizing shape associated with tuning local meta-models. The adaptive robust design optimization aims to modify the shape optimization process. The sufficient infilling strategy—known as adaptive uniform infilling strategy—determines search space dimensions based on the last optimization results or initial point. Following this, 3D model simulations are used to tune local meta-models. Finally, the global optimization gradient-based method—Adaptive Filter Sequential Quadratic Programing(AFSQP) is utilized to search the neighborhood for a probable optimum point. The effectiveness of the proposed method is investigated by applying it, along with conventional optimization approach-based meta-models, to a Blended Wing Body(BWB) Unmanned Aerial Vehicle(UAV). The drag coefficient is defined as the objective function, which is subjected to minimum lift coefficient bounds and stability constraints. The simulation results indicate improvement in meta-model accuracy and reduction in computational time of the method introduced in this paper.  相似文献   

19.
A major challenge to the successful full-scale development of modern aerospace systems is to address competing objectives such as improved performance, reduced costs, and enhanced safety. Accurate, high-fidelity models are typically time consuming and computationally expensive. Furthermore, informed decisions should be made with an understanding of the impact (global sensitivity) of the design variables on the different objectives. In this context, the so-called surrogate-based approach for analysis and optimization can play a very valuable role. The surrogates are constructed using data drawn from high-fidelity models, and provide fast approximations of the objectives and constraints at new design points, thereby making sensitivity and optimization studies feasible. This paper provides a comprehensive discussion of the fundamental issues that arise in surrogate-based analysis and optimization (SBAO), highlighting concepts, methods, techniques, as well as practical implications. The issues addressed include the selection of the loss function and regularization criteria for constructing the surrogates, design of experiments, surrogate selection and construction, sensitivity analysis, convergence, and optimization. The multi-objective optimal design of a liquid rocket injector is presented to highlight the state of the art and to help guide future efforts.  相似文献   

20.
超声速喷管性能优化研究与应用   总被引:2,自引:1,他引:1       下载免费PDF全文
基于重启全局最优化方法和高斯过程(GP)模型,以模型区流场指标为优化目标,对超声速喷管型面进行优化设计。给出0.6m连续式跨声速风洞流场测试结果,提出优化问题并验证了CFD计算的有效性。利用拥挤距离来控制重启局部优化算法的位置,实现更高效的重启全局最优化算法;利用高斯过程模型对喷管设计参数与模型区流场性能指标的关系进行建模,构造替代数学模型来执行优化搜索,以减少实际的CFD评估次数。结果表明:该方法能以较小的代价实现对喷管性能的优化,模型区马赫数方均根偏差由0.012降到0.001,马赫数梯度由0.049降到0。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号