首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
刘赵淼  徐迎丽  申峰 《推进技术》2014,35(3):305-313
为逆流矢量喷管几何构型选取提供理论依据,采用数值模拟方法研究了零攻角亚音速条件下抽吸角、横向高度及垂直段高度等外套管外形参数对逆流推力矢量喷管内部流动结构及矢量性能的影响,得到了推力矢量角、合成推力系数、二次流流量比等随外形参数的变化规律。研究结果表明:抽吸角及外套管垂直段高度对逆流矢量喷管的推力矢量角变化均无大的影响,且抽吸角及外套管垂直段高度分别变化时,两者的最大矢量角和最小矢量角的角度差均不超过0.35°,合成推力系数均随两者增大而减小,抽吸角变化时合成推力系数在0.778左右,其变化值不超过0.001,垂直段高度变化时合成推力系数范围为0.77~0.84,而流量比受抽吸角及垂直段高度变化的影响均微小;横向高度较小时,主流易发生附体,随其增大,推力矢量角增加,最大值达7°,而合成推力系数随之减小,范围为0.75~0.87,抽吸二次流流向由同向转变为逆向,流量增大,最大流量比为2%;推力矢量喷管的整体性能较无外流时明显下降。  相似文献   

2.
为了掌握S弯二元矢量喷管的气动性能,采用CFD数值模拟方法研究了有无二次流喷射状态下S弯二元矢量喷管激波 诱导的工作机理,以及二次流喷射位置、主流落压比和二次流与主流总压比对S弯二元矢量喷管推力系数、矢量角、壁面静压的影 响。结果表明:在二次流流通面积不变、次流与主流流量比Ws/Wp≤6%的情况下,喷管上、下壁面分别喷射二次流产生的最大矢量 角分别为22.9°和15.9°;喷射位置对矢量角有较大影响,对推力系数影响不大,随着二次流喷射位置逐渐靠近出口,矢量角先增大 后减小;射流位置固定,随着主流落压比的增大,推力系数增大,当主流落压比从2增大到6时,推力系数最多提高17.9 %,矢量角 先增大后减小;随着二次流与主流总压比的增大,推力系数整体呈单调减小趋势,矢量角先增大后减小。  相似文献   

3.
为探究腔体扩张段射流对旁路式双喉道喷管气动矢量特性的影响,采用数值模拟方法对喷管在不同次流入射位置和次流压比下的内流情况进行仿真研究.结果表明:在扩张段引入次流能够改善喷管内流性能,随着次流入射位置后移,推力矢量角先增大后减小,推力系数逐渐增大且增幅渐缓;随着次流压比增加,喷管推力矢量角逐渐增加后基本保持不变,推力系数先增加后快速下降,而矢量效率先急剧上升后趋于平稳;改进后的喷管在最佳算例中得到推力矢量角为27.59°,推力系数为0.956,矢量效率3°/1%次流流量.  相似文献   

4.
刘赵淼  陈川  申峰  徐迎丽 《推进技术》2014,35(4):442-448
为了研究外流马赫数变化对逆流推力矢量喷管内部流场结构和性能特点的影响,参考实验,数值模拟了不同马赫数下的流场结构、喷管矢量角和逆向二次流质量流量系数。结果表明:外流马赫数从0增加到0.8的过程中,喷管内流场结构会随着外流马赫数的增大而不断变化从而改变主流两侧压力差,进而导致矢量角逐渐减小,与此同时二次流质量流量系数快速增大;外流马赫数从0.8增大到1.5的过程中,流场结构和矢量角随马赫数变化没有明显变化,二次流质量流量系数缓慢增大。  相似文献   

5.
二元双喉道射流推力矢量喷管流动参数影响的数值研究   总被引:1,自引:0,他引:1  
采用数值模拟方法研究了不同流动参数对二元双喉道射流推力矢量喷管(Dual-throat fluidic Thrust-vectoring Nozzle,DTN)内流特性和推力矢量控制效果的影响。结果表明,DTN在非推力矢量情况下,NPR在3~4范围时,推力系数较大,达到0.968,而流量系数较小,仅为0.93;NPR再增大,推力系数迅速下降。在推力矢量情况下,落压比一定时,随着次流流量比的增加,推力矢量角增加,而流量系数、推力系数、推力矢量效率减小;次流流量比一定时,随着落压比的增加,推力矢量角减小,系统推力系数先增加后减小,流量系数略微增加。  相似文献   

6.
固定几何气动矢量喷管气动性能数值仿真   总被引:1,自引:0,他引:1       下载免费PDF全文
为掌握固定几何气动矢量喷管气动性能,通过CFD数值模拟的方法,研究了主流落压比、扩张段二次流落压比、扩张段二次流角度和引射对固定几何气动矢量喷管轴向推力系数的影响;主流落压比、扩张段二次流落压比和扩张段二次流角度对矢量角的影响;主流落压比、喉道二次流落压比和喉道二次流角度对喉道控制率的影响。结果表明:随主流落压比增大轴向推力系数增大,矢量角减小,喉道控制率减小;随扩张段二次流落压比增大推力系数减小,矢量角增大;随喉道二次流落压比增大,喉道控制率增大;随扩张段二次流角增大轴向推力系数减小,矢量角略有减小;随喉道二次流角增大喉道控制率增大;随引射方式增加喷管推力系数增大。  相似文献   

7.
汪明生  杨建军 《航空学报》2009,30(4):630-636
基于数值方法,研究了逆流推力矢量喷管中由于流动自身导致的非定常现象。结果表明,当抽吸背压下降至某个范围时(50.66~60.8 kPa),主流在接近外套壁面的某个位置处呈现出周期性振荡,流动参数(抽吸二次流量、推力矢量角、合成推力系数)也以小振幅振荡,但是同向二次流量却没有振荡。深入的流动机理分析表明,此时在逆流剪切层中,分离涡周期性地形成和发展,没有呈现出流动失稳,同时剪切层中的速度比又远大于定常流动下的值,因此流动表现为自激振荡特征。  相似文献   

8.
逆流推力矢量喷管基本流动特征的数值研究   总被引:6,自引:1,他引:5  
杨建军  汪明生 《航空学报》2008,29(4):769-775
 利用数值模拟的方法,通过对逆流方案中喷管气动性能的研究验证了逆流推力矢量方案的可行性。在非矢量状态下主喷管出口截面上的流量系数和推力系数分别达到99.2%和98.8%;矢量化状态下最大推力矢量角超过了20°,而推力系数与非矢量状态下的比较下降不超过3.7%,且最大抽吸二次流量比仅为2.1%。此外,对该方案中一些基本的流动特征进行了分析,得到了抽吸二次流量比与推力矢量角的变化关系所揭示的流场结构,并对此进行了详细解释,同时揭示了逆流剪切层强烈的湍动特性和大涡结构的特点。  相似文献   

9.
轴对称射流矢量喷管的试验和数值模拟   总被引:6,自引:2,他引:6  
对基于激波来实现推力矢量的轴对称射流矢量喷管的缩比模型进行了测力和测压试验,用推广到可计算可压缩流的SIMPLE方法其内外流场进行了数值模拟,根据试验和数值模拟结果分析了喷管主流与次流相互作用产生的复杂流场结构、二次流流量和落压比对气动矢量角的影响,在落压比3~6范围内,二次流流量和喷管主流比值增大,气动矢量角增大,两者比值相同时,落压比增大,气动矢量角减小。  相似文献   

10.
数值模拟了二次流喷射位置对基于激波控制的二维收-扩(2DCD)喷管的流体推力矢量气动性能,结果表明喷射位置对矢量角有较大影响,在喷管落压比NPR=4.5时,二次流喷射位置相对位于喷管发散段中部时,矢量角最大;在NPR≥7.2时,二次流喷射位置越靠近出口,矢量角越大.喷射位置对推力系数及流量系数的影响不大.   相似文献   

11.
双喉道推力矢量喷管的内流特性研究   总被引:15,自引:1,他引:14       下载免费PDF全文
汪明生  杨平 《推进技术》2008,29(5):566-572
为了研究双喉道推力矢量喷管(DTN)在非推力矢量和推力矢量情况下的内流特性,基于数值模拟的方法,计算分析了不同几何参数和气动参数对DTN的影响。结果表明,DTN在非推力矢量时,仅在落压比(ZNPR)为3~4之间才具有较高的内流性能(推力系数达0.97,流量系数为0.94),当落压比增加时,推力系数迅速下降。在推力矢量时,DTN可以获得很大的推力矢量效率(当落压比为4,引射量为3%时达到4),且推力系数也较高(0.94以上),其综合性能优于单喉道偏移和激波操纵式矢量喷管。二次流量、落压比、凹腔扩张角和收敛角、引射角度都对推力矢量状态下的DTN内流性能有着不同的影响。为了实现DTN在推力矢量和非推力矢量下都有较好的内流综合性能,所建议的设计参数为:落压比为3~4,引射量为3%,凹腔扩张角为10°左右,收敛角在20°~30°,引射角度为30°逆流引射角(β=30°)。  相似文献   

12.
基于横向二次射流的水下推力矢量方法   总被引:2,自引:1,他引:1       下载免费PDF全文
提出一种基于横向二次射流的水下推力矢量技术,通过二次射流的横向速度场诱导主流发生偏转,建立了推力矢量偏角与流速偏角的数学关系,证明了通过主流偏转实现推力矢量偏转的有效性。通过数值计算方法分析了不同二次射流深度、不同二次射流/主流体积比及不同二次射流/主流速度比条件下主流偏转角度变化。结果显示:随着二次射流深度的增加,主流受到壁面阻碍作用增强,因而偏转角度减小。随着二次射流/主流体积比的减小,出口负压区所占比例减小,主流偏转角度增加,且当体积比减小到一定值后,负压影响可以忽略,主流不再随体积比而变化。主流偏转角度随速度比增加而增加,且在速度比一定的条件下,速度数值的变化对主流偏转没有影响。设计了一种主流为圆形射流的水下矢量推进器,对其数值分析结果揭示:当位于射流中剖面同侧的二次射流全部作动时,主流可以取得最大的偏转角度,且主流的偏转方向可以通过使不同的二次射流组合处于作动状态进行控制。   相似文献   

13.
轴对称矢量喷管内流特性的模型试验   总被引:8,自引:0,他引:8       下载免费PDF全文
在喷管落压比1.5~17的情况下,对3组不同几何尺寸的轴对称矢量喷管模型试验件内流特性进行了试验。结果表明:气动矢量角与几何矢量角呈正比关系;当落压比小于设计落压比时,气动矢量角会出现大于几何矢量角的峰值,并随落压比的增加而逐渐趋近几何矢量角,推力系数并不随几何矢量角增加而显著下降,且与非矢量状态相当;矢量状态下,推力系数与面积比呈正比关系,而对喉道面积的变化不敏感。  相似文献   

14.
球型收敛调节片喷管静态内性能数值研究   总被引:6,自引:1,他引:5       下载免费PDF全文
王宏亮  张靖周  单勇 《推进技术》2008,29(4):443-447
基于CFD数值计算软件,针对喉部宽高比为2.083的球型收敛调节片喷管,进行了矢量与非矢量状态下的内性能数值研究。考察了在不同俯仰和偏航矢量状态下,喷管推力系数、流量系数的变化及落压比对气动矢量角的影响。结果表明:俯仰和偏航两种矢量状态对喷管的推力系数、流量系数产生的影响都在3%以内。喷管的俯仰是通过同时转动上下扩张板来实现的,其与偏航作动相比表现出对性能更大的影响;另外发现在设计压比之前,气动俯仰角出现了随落压比先增大后减小的趋势,而设计压比之后渐渐趋于不变,基本和几何俯仰角相等,但落压比对气动偏航角却没有表现出太大的影响。  相似文献   

15.
一种基于引射效应的流体推力矢量新技术   总被引:2,自引:0,他引:2  
肖中云  顾蕴松  江雄  陈作斌 《航空学报》2012,33(11):1967-1974
流体推力矢量是一种利用流动控制技术实现推力转向的方法,针对现有二次流动控制推力矢量方案的不足,提出了采用引射方式的新型流体推力矢量技术,该技术在喷管套管内利用引射作用产生低压区使主流方向偏转,实现推力转向。并且可以通过限制流量的方法调节主喷流对单侧套管的抽吸程度,使得在喷管套管内产生不同的横向压力梯度,达到了矢量化控制推力转向的目的。运用这一概念设计了矩形矢量喷管,采用数值模拟方法验证了喷管的推力转向效果,探讨了该矢量喷管内喷流转向形成的流动机理,从推力损失、转向效率上对喷管的性能特点进行了分析。计算结果表明:该矢量喷管的最大推力转向角度达到24°,对应喷流附壁状态,在喷流附壁之前可以矢量控制的推力转向角为0°~13°,推力损失在1.5%~7.0%之间变化。最后根据该计算外形以1∶10比例加工了矢量喷管,运用高压气源进行了尾喷流偏转试验。试验表明该矢量喷管在设计状态能够实现射流矢量偏转,从原理上验证了该推力矢量方案的可行性。  相似文献   

16.
流体喉部推力调节特性实验   总被引:3,自引:2,他引:1  
采用空气与水作为二次流工质,进行流体喉部的冷流实验,研究了固体火箭发动机流体喉部的推力调节特性.分析了不同二次流工质、注射方式,注射流量下的推力响应时间、扼流性能、推力偏角和推力效率.实验结果表明:注射液态二次流推力响应时间更短;扼流性能、推力偏角与二次流的注射位置及注射角度有关,且随流量比的增大而增大;相同的流量比下,气态二次流的推力性能要比液态二次流的效果更好,但提供相同的流量比,液态二次流需要压比更小,且流量比的调节范围更大.   相似文献   

17.
基于次流喷射控制推力矢量喷管的实验及数值研究   总被引:13,自引:2,他引:11  
应用实验和数值模拟的方法,对一种新型的推力矢量喷管—基于次流喷射控制的二维推力矢量喷管的推力矢量性能和流场进行了研究。实验是在西北工业大学小型超高速吹气式风洞中进行,测量了在不同的二次喷流情况下,推力矢量和流场的变化规律;采用时间推进求解N-S方程的方法数值模拟了二维推力矢量喷管内流场和性能。研究结果表明,应用次流喷射控制主流流动可以实现较大的推力矢量转折,但是,二次喷流必须具有足够的压力值;如何从推力矢量工作方式恢复到轴向流动工作方式则是需要进一步研究的问题。   相似文献   

18.
激波诱导控制推力矢量喷管实验及数值计算   总被引:2,自引:0,他引:2  
采用实验方法,通过在二元收敛-扩张喷管扩张段引入二次流喷射,开展了激波诱导控制的流体推力矢量技术研究.实验过程通过喷管上、下壁面压力测量及出口射流纹影观测,研究了主流压力、二次流喷射压力以及二次流喷嘴几何(缝或孔)对推力矢量喷管性能的影响.同时,结合数值计算方法,对各实验工况下的喷管流场进行数值模拟,获得了实验手段难以得到的流场数据和性能,对实验结果进行了辅助分析.初步研究结果表明:在给定的实验条件下,主流压力越高,喷管推力矢量角越小,同时推力系数越大;二次流压力越高,喷管推力矢量角越大,同时推力系数减小;同孔喷射相比,采用喷缝几何下的上壁面激波诱导分离点更趋于向上游移动,分离点后压升显著,射流穿透能力强,对主流的扰动强烈.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号