首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major objective of the workshop was to learn about the chemical composition, physical structure, and thermodynamic conditions of the outer parts of the solar nebula where comets formed. Here we sum up what we have learned from years of research about the molecular constituents of comet comae primarily from in situ measurements of Comet 1P/Halley and remote sensing of Comets 1P/Halley, Hale-Bopp (C/1995 O1), and Hyakutake (C/1996 B2). These three bright comets are presumably captured Oort cloud comets. We summarize the analyses of these data to predict the composition of comet nuclei and project them further to the composition, structure, and thermodynamic conditions in the nebula. Near-future comet missions are directed toward less active short-period Jupiter-family comets. Thus, future analyses will afford a better understanding of the diversity of these two major groups of comets and their respective regions of origin in the solar or presolar nebula. We conclude with recommendations for determining critical data needed to aid in further analyses. Results of the workshop provide new guidelines and constraints for modeling the solar nebula. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
R. Schulz 《Space Science Reviews》2008,138(1-4):225-235
This article presents some recent imaging and spectroscopic observations that led to results which are significant for understanding the properties of comet nuclei. The coma morphology and/or composition were investigated for 12 comets belonging to different dynamical classes. The data analysis showed that the coma morphology of three non-periodic comets is not consistent with the general assumption that dynamically new comets still have a relatively uniform nucleus surface and therefore do not exhibit gas and/or dust jets in their coma. The determination of carbon and nitrogen isotopic ratios revealed the same values for all comets investigated at various heliocentric distances. However, the relative abundance of the rare nitrogen isotope 15N is about twice as high as in the Earth’s atmosphere. Observations of comets at splitting events and during outbursts led to indications for differences between material from the nucleus surface and the interior. The monitoring of the induced outburst of 9P/Temple revealed that under non-steady state conditions the fast disintegration of species is detectable.  相似文献   

3.
Stern  S.A. 《Space Science Reviews》1999,90(1-2):355-361
The remote sensing of comets in the ultraviolet bandpass has been a valuable tool for studying the structure, composition, variability, and physical processes at work in cometary comae. By extension, these studies of comae have revealed key insights into the composition of cometary nuclei. Here we briefly review the ultraviolet studies of comets, and then take a look toward the future of such work as anticipated by the advent of several key new instruments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   

5.
Cometary Dust     
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth’s orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.  相似文献   

6.
The distribution of some molecules and radicals (H2CO, CO, HNC, CN,?…) in the atmosphere of several comets cannot be explained only by a direct sublimation from the nucleus, or by gas phase processes in the coma. Such molecules are in part the result of a distributed source in the coma, which could be the photo and thermal degradation of dust. We present a review of the degradation processes and discuss possible interpretations of the observations in which the degradation of solid complex organic material in dust particles seems to play a major role. The knowledge of such gas production mechanisms provides important clues on the chemical nature of the refractory organic material contained in comet nuclei.  相似文献   

7.
Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ~2–5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.  相似文献   

8.
The modern theory of cometary dynamics is based on Oort's hypothesis that the solar system is surrounded by a spherically symmetric cloud of 1011 to 1012 comets extending out to interstellar distances. Dynamical modeling and analysis of cometary motion have confirmed the ability of the Oort hypothesis to explain the observed distribution of energies for the long-period comet orbits. The motion of comets in the Oort cloud is controlled by perturbations from random passing stars, interstellar clouds, and the galactic gravitational field. Additionally, comets which enter the planetary region are perturbed by the major planets and by nongravitational forces resulting from jetting of volatiles on the surfaces of the cometary nuclei. The current Oort cloud is estimated to have a radius of 6 to 8 × 104 AU, and to contain some 2 × 1012 comets with a total mass of 7 to 8 Earth masses. Evidence has begun to accumulate for the existence of a massive inner Oort cloud extending from just beyond the orbit of Neptune to 104 AU or more, with a population up to 100 times that of the outer Oort cloud. This inner cloud may serve as a reservoir to replenish the outer cloud as comets are stripped away by the various perturbers, and may also provide a more efficient source for the short-period comets. Recent suggestions of an unseen solar companion star or a tenth planet orbiting in the inner cloud and causing periodic comet showers on the Earth are likely unfounded. The formation site of the comets in the Oort cloud was likely the extended nebula accretion disc reaching from about 15 to 500 AU from the forming protosun. Comets which escape from the Oort cloud contribute to the flux of interstellar comets, though capture of interstellar comets by the solar system is extremely unlikely. The existence of Oort clouds around other main sequence stars has been suggested by the detection by the IRAS spacecraft of cool dust shells around about 10% of nearby stars.  相似文献   

9.
The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.  相似文献   

10.
The ISSI workshop on “Origin and evolution of comet nuclei” had the goal to put together recent scientific findings concerning the “life” of a comet from the formation of the material in a dark molecular cloud to the accretion in the early solar system, from cometesimals to comet nuclei which were shaped and altered by cosmic rays, by radioisotopic heating, to their sublimation in the inner solar system. Astronomers, space researchers, modelers and laboratory experimentalists tried to draw the coherent picture. However, it became clear that there are still a lot of open questions, findings which seem to contradict each other, missing laboratory data, and experimental biases not taken into account. The Rosetta mission will make a big step forward in cometary science, but it will almost certainly not be able to resolve all questions. The main outcome of this workshop was the fact that comets are much more diverse than commonly thought and they are not only different from comet to comet but may consist of morphologically and chemically inhomogeneous cometesimals which may even have different places of origin.  相似文献   

11.
Waves and instabilities in dusty space plasmas   总被引:1,自引:0,他引:1  
  相似文献   

12.
Comets are heterogeneous mixtures of interstellar and nebular materials. The degree of mixing of interstellar sources and nebular sources at different nuclear size scales holds the promise of revealing how cometary particles, cometesimals, and cometary nuclei accreted. We can ascribe cometary materials to interstellar and nebular sources and see how comets probe planet-forming process in our protoplanetary disk. Comets and cometary IDPs contain carbonaceous matter that appears to be either similar to poorly-graphitized (amorphous) carbon, a likely ISM source, or highly labile complex organics, with possible ISM or outer disk heritage. The oxygen fugacity of the solar nebula depends on the dynamical interplay between the inward migration of carbon-rich grains and of icy (water-rich) grains. Inside the water dissociation line, OH? reacts with carbon to form CO or CO2, consuming available oxygen and contributing to the canonical low oxygen fugacity. Alternatively, the influx of water vapor and/or oxygen rich dust grains from outer (cooler) disk regions can raise the oxygen fugacity. Low oxygen fugacity of the canonical solar nebula favors the condensation of Mg-rich crystalline silicates and Fe-metal, or the annealing of Fe-Mg amorphous silicates into Mg-rich crystals and Fe-metal via Fe-reduction. High oxygen fugacity nebular conditions favors the condensation of Fe-bearing to Fe-rich crystalline silicates. In the ISM, Fe-Mg amorphous silicates are prevalent, in stark contrast to Mg-rich crystalline silicates that are rare. Hence, cometary Mg-rich crystalline silicates formed in the hot, inner regions of the canonical solar nebula and they are the touchstone for models of the outward radial transport of nebular grains to the comet-forming zone. Stardust samples are dominated by Mg-rich crystalline silicates but also contain abundant Fe-bearing and Fe-rich crystalline silicates that are too large (?0.1 μm) to be annealed Fe-Mg amorphous silicates. By comparison with asteroids, the Stardust Fe-bearing and Fe-rich crystalline silicates suggests partial aqueous alteration in comet nuclei. However, aqueous alteration transforms Fe-rich olivine to phyllosilicates before Mg-rich olivine, and Stardust has Mg-rich and Fe-rich olivine and no phyllosilicates. Hence, we look to a nebular source for the moderately Fe-rich to nearly pure-Fe crystalline silicates. Primitive matrices have Mg-Fe silicates but no phyllosilicates, supporting the idea that Mg-Fe silicates but not phyllosilicates are products of water-rich shocks. Chondrule-formation is a late stage process in our protoplanetary disk. Stardust samples show comet 81P/Wild 2 formed at least as late to incorporate a few chondrules, requiring radial transport of chondrules out to perhaps >20 AU. By similar radial transport mechanisms, collisional fragments of aqueously altered asteroids, in particular achondrites that formed earlier than chondrules, might reach the comet-forming zones. However, Stardust samples do not have phyllosilicates and chondrules are rare. Hence, the nebular refractory grains in comet 81P/Wild 2, as well as other comets, appear to be pre-accretionary with respect to asteroid parent bodies. By discussing nebular pathways for the formation of Fe-rich crystalline silicates, and also phyllosilicates and carbonates, we put forth the view that comets contain both the interstellar ingredients for and the products of nebular transmutation.  相似文献   

13.
We present a review of the main physical features of comet nuclei, their birthplaces and the dynamical processes that allow some of them to reach the Sun’s neighborhood and become potentially detectable. Comets are thought to be the most primitive bodies of the solar system although some processing—for instance, melting water ice in their interiors and collisional fragmentation and reaccumulation—could have occurred after formation to alter their primordial nature. Their estimated low densities (a few tenths g?cm?3) point to a very fluffy, porous structure, while their composition rich in water ice and other highly volatile ices point to a formation in the region of the Jovian planets, or the trans-neptunian region. The main reservoir of long-period comets is the Oort cloud, whose visible radius is ~3.3×104 AU. Yet, the existence of a dense inner core cannot be ruled out, a possibility that would have been greatly favored if the solar system formed in a dense galactic environment. The trans-neptunian object Sedna might be the first discovered member that belongs to such a core. The trans-neptunian population is the main source of Jupiter family comets, and may be responsible for a large renovation of the Oort cloud population.  相似文献   

14.
The sodium emissions have been observed in several new and long-period comets, but only for comet Mrkos 1957d (Nguyen-Huu-Doan, 1960) was a sodium tail detected on a Schmidt plate obtained with a objective prism. Comet Hale-Bopp 1995 O1 offered the first great opportunity to get an image of a long sodium tail. It was more than 3 × 107 km long, defined as a third type of tail, as it was composed only of neutral atoms (Cremonese, 1997a). After the discovery of the sodium tail another team announced it had observed it (Wilson et al., 1998), but it was soon realized they had seen a different sodium tail. The image of Wilson et al. (1998) showed a very diffuse sodium tail superimposed on the dust tail, most likely due to the release of sodium atoms from dust particles. It was different from the narrow tail found in the image obtained by the European Hale-Bopp Team and its position angle was 15-20 degrees lower. Spectroscopic observations have been performed on the dust tail, at different beta values, and along the narrow sodium tail showing that the sodium emissions had very different line profiles. The analysis of these profiles will yield important insights into the sources in the inner coma and in the dust tail. This work will report on preliminary analysis of both sodium tails and emphasize the high-resolution spectroscopy performed on the dust tail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
I. Mann 《Space Science Reviews》1995,72(1-2):477-482
Although the interplanetary dust cloud is assumed to be mainly concentrated in the ecliptic plane, there is a component of dust particles on highly inclined orbits that forms the out-of-ecliptic distribution. The ULYSSES mission for the first time makes this component accessible to in-situ, detection. Evidence for this dust component is also provided from the analysis of the Zodiacal light brightness and especially from the spherical shape of the solar F — corona. An obvious source for an out-of-ecliptic dust population is the activity of comets on high eccentric, highly inclined orbits. We discuss the dynamical conditions of particles under the influence of the radiation pressure when released from the comet and discuss their input to the dust cloud based on brightness analysis and in-situ results.  相似文献   

16.
Greenberg  J. Mayo  Li  Aigen 《Space Science Reviews》1999,90(1-2):149-161
The chemical composition of comet nuclei derived from current data on interstellar dust ingredients and comet dust and coma molecules are shown to be substantially consistent with each other in both refractory and volatile components. When limited by relative cosmic abundances the water in comet nuclei is constrained to be close to 30% by mass and the refractory to volatile ratio is close to 1:1. The morphological structure of comet nuclei, as deduced from comet dust infrared continuum and spectral emission properties, is described by a fluffy (porous) aggregate of tenth micron silicate core-organic refractory mantle particle on which outer mantles of predominantly H2O ices contain embedded carbonaceous and polycyclic aromatic hydrocarbon (PAH) type particles of size in the of 1 - 10nm range. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Comets are thought to preserve the most pristine material currently present in the solar system, as they are formed by agglomeration of dust particles in the solar nebula, far from the Sun, and their interiors have remained cold. By approaching the Sun, volatile components and dust particles are released forming the cometary coma. During the phase of Heavy Bombardment, 3.8--4 billion years ago, cometary matter was delivered to the Early Earth. Precise knowledge on the physico-chemical composition of comets is crucial to understand the formation of the Solar System, the evolution of Earth and particularly the starting conditions for the origin of life on Earth. Here, we report on the COSAC instrument, part of the ESA cometary mission Rosetta, which is designed to characterize, identify, and quantify volatile cometary compounds, including larger organic molecules, by in situ measurements of surface and subsurface cometary samples. The technical concept of a multi-column enantio-selective gas chromatograph (GC) coupled to a linear reflectron time-of-flight mass-spectrometer instrument is presented together with its realisation under the scientific guidance of the Max-Planck-Institute for Solar System Research in Katlenburg-Lindau, Germany. The instrument's technical data are given; first measurements making use of standard samples are presented. The cometary science community is looking forward to receive fascinating data from COSAC cometary in situ measurements in 2014.  相似文献   

18.
Analysis of the polarization of light scattered by cometary particles reveals similarities amongst the phase curves, together with some clear differences: i) comets with a strong silicate emission feature present a high maximum in polarization, ii) the polarization is always slightly lower than the average in inner comae and stronger in jet-like structures. These results are in excellent agreement with the Greenberg model of dust particles built up of fluffy aggregates of much smaller grains. Also, they suggest the existence of different regions of formation, and of different stages of evolution for the scattering particles inside a given cometary coma. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
We review the current knowledge and understanding of dust in the inner solar system. The major sources of the dust population in the inner solar system are comets and asteroids, but the relative contributions of these sources are not quantified. The production processes inward from 1 AU are: Poynting-Robertson deceleration of particles outside of 1 AU, fragmentation into dust due to particle-particle collisions, and direct dust production from comets. The loss processes are: dust collisional fragmentation, sublimation, radiation pressure acceleration, sputtering, and rotational bursting. These loss processes as well as dust surface processes release dust compounds in the ambient interplanetary medium. Between 1 and 0.1 AU the dust number densities and fluxes can be described by inward extrapolation of 1 AU measurements, assuming radial dependences that describe particles in close to circular orbits. Observations have confirmed the general accuracy of these assumptions for regions within 30° latitude of the ecliptic plane. The dust densities are considerably lower above the solar poles but Lorentz forces can lift particles of sizes < 5 μm to high latitudes and produce a random distribution of small grains that varies with the solar magnetic field. Also long-period comets are a source of out-of-ecliptic particles. Under present conditions no prominent dust ring exists near the Sun. We discuss the recent observations of sungrazing comets. Future in-situ experiments should measure the complex dynamics of small dust particles, identify the contribution of cometary dust to the inner-solar-system dust cloud, and determine dust interactions in the ambient interplanetary medium. The combination of in-situ dust measurements with particle and field measurements is recommended.  相似文献   

20.
Dust is an important constituent of cometary emission; its analysis is one of the major objectives of ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko (C–G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C–G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C–G is given, because model parameters are derived from this data if possible. For quantities not yet measured for 67P/C–G, we use values obtained for other comets, e.g. concerning the optical and compositional properties of the dust grains. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C–G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that both the dust mass distribution and the time dependence of the dust production rate of 67P/C–G are those of a fairly typical comet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号